http://git-wip-us.apache.org/repos/asf/hive/blob/bd371246/ql/src/test/results/clientpositive/perf/spark/query66.q.out
----------------------------------------------------------------------
diff --git a/ql/src/test/results/clientpositive/perf/spark/query66.q.out 
b/ql/src/test/results/clientpositive/perf/spark/query66.q.out
new file mode 100644
index 0000000..1dc0fac
--- /dev/null
+++ b/ql/src/test/results/clientpositive/perf/spark/query66.q.out
@@ -0,0 +1,873 @@
+PREHOOK: query: explain
+select   
+         w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+        ,ship_carriers
+        ,year
+       ,sum(jan_sales) as jan_sales
+       ,sum(feb_sales) as feb_sales
+       ,sum(mar_sales) as mar_sales
+       ,sum(apr_sales) as apr_sales
+       ,sum(may_sales) as may_sales
+       ,sum(jun_sales) as jun_sales
+       ,sum(jul_sales) as jul_sales
+       ,sum(aug_sales) as aug_sales
+       ,sum(sep_sales) as sep_sales
+       ,sum(oct_sales) as oct_sales
+       ,sum(nov_sales) as nov_sales
+       ,sum(dec_sales) as dec_sales
+       ,sum(jan_sales/w_warehouse_sq_ft) as jan_sales_per_sq_foot
+       ,sum(feb_sales/w_warehouse_sq_ft) as feb_sales_per_sq_foot
+       ,sum(mar_sales/w_warehouse_sq_ft) as mar_sales_per_sq_foot
+       ,sum(apr_sales/w_warehouse_sq_ft) as apr_sales_per_sq_foot
+       ,sum(may_sales/w_warehouse_sq_ft) as may_sales_per_sq_foot
+       ,sum(jun_sales/w_warehouse_sq_ft) as jun_sales_per_sq_foot
+       ,sum(jul_sales/w_warehouse_sq_ft) as jul_sales_per_sq_foot
+       ,sum(aug_sales/w_warehouse_sq_ft) as aug_sales_per_sq_foot
+       ,sum(sep_sales/w_warehouse_sq_ft) as sep_sales_per_sq_foot
+       ,sum(oct_sales/w_warehouse_sq_ft) as oct_sales_per_sq_foot
+       ,sum(nov_sales/w_warehouse_sq_ft) as nov_sales_per_sq_foot
+       ,sum(dec_sales/w_warehouse_sq_ft) as dec_sales_per_sq_foot
+       ,sum(jan_net) as jan_net
+       ,sum(feb_net) as feb_net
+       ,sum(mar_net) as mar_net
+       ,sum(apr_net) as apr_net
+       ,sum(may_net) as may_net
+       ,sum(jun_net) as jun_net
+       ,sum(jul_net) as jul_net
+       ,sum(aug_net) as aug_net
+       ,sum(sep_net) as sep_net
+       ,sum(oct_net) as oct_net
+       ,sum(nov_net) as nov_net
+       ,sum(dec_net) as dec_net
+ from (
+    (select 
+       w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+       ,'DIAMOND' || ',' || 'AIRBORNE' as ship_carriers
+       ,d_year as year
+       ,sum(case when d_moy = 1 
+               then ws_sales_price* ws_quantity else 0 end) as jan_sales
+       ,sum(case when d_moy = 2 
+               then ws_sales_price* ws_quantity else 0 end) as feb_sales
+       ,sum(case when d_moy = 3 
+               then ws_sales_price* ws_quantity else 0 end) as mar_sales
+       ,sum(case when d_moy = 4 
+               then ws_sales_price* ws_quantity else 0 end) as apr_sales
+       ,sum(case when d_moy = 5 
+               then ws_sales_price* ws_quantity else 0 end) as may_sales
+       ,sum(case when d_moy = 6 
+               then ws_sales_price* ws_quantity else 0 end) as jun_sales
+       ,sum(case when d_moy = 7 
+               then ws_sales_price* ws_quantity else 0 end) as jul_sales
+       ,sum(case when d_moy = 8 
+               then ws_sales_price* ws_quantity else 0 end) as aug_sales
+       ,sum(case when d_moy = 9 
+               then ws_sales_price* ws_quantity else 0 end) as sep_sales
+       ,sum(case when d_moy = 10 
+               then ws_sales_price* ws_quantity else 0 end) as oct_sales
+       ,sum(case when d_moy = 11
+               then ws_sales_price* ws_quantity else 0 end) as nov_sales
+       ,sum(case when d_moy = 12
+               then ws_sales_price* ws_quantity else 0 end) as dec_sales
+       ,sum(case when d_moy = 1 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as jan_net
+       ,sum(case when d_moy = 2
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as feb_net
+       ,sum(case when d_moy = 3 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as mar_net
+       ,sum(case when d_moy = 4 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as apr_net
+       ,sum(case when d_moy = 5 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as may_net
+       ,sum(case when d_moy = 6 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as jun_net
+       ,sum(case when d_moy = 7 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as jul_net
+       ,sum(case when d_moy = 8 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as aug_net
+       ,sum(case when d_moy = 9 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as sep_net
+       ,sum(case when d_moy = 10 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as oct_net
+       ,sum(case when d_moy = 11
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as nov_net
+       ,sum(case when d_moy = 12
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as dec_net
+     from
+          web_sales
+         ,warehouse
+         ,date_dim
+         ,time_dim
+         ,ship_mode
+     where
+            ws_warehouse_sk =  w_warehouse_sk
+        and ws_sold_date_sk = d_date_sk
+        and ws_sold_time_sk = t_time_sk
+       and ws_ship_mode_sk = sm_ship_mode_sk
+        and d_year = 2002
+       and t_time between 49530 and 49530+28800 
+       and sm_carrier in ('DIAMOND','AIRBORNE')
+     group by 
+        w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+       ,d_year
+       )
+ union all
+    (select 
+       w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+       ,'DIAMOND' || ',' || 'AIRBORNE' as ship_carriers
+       ,d_year as year
+       ,sum(case when d_moy = 1 
+               then cs_ext_sales_price* cs_quantity else 0 end) as jan_sales
+       ,sum(case when d_moy = 2 
+               then cs_ext_sales_price* cs_quantity else 0 end) as feb_sales
+       ,sum(case when d_moy = 3 
+               then cs_ext_sales_price* cs_quantity else 0 end) as mar_sales
+       ,sum(case when d_moy = 4 
+               then cs_ext_sales_price* cs_quantity else 0 end) as apr_sales
+       ,sum(case when d_moy = 5 
+               then cs_ext_sales_price* cs_quantity else 0 end) as may_sales
+       ,sum(case when d_moy = 6 
+               then cs_ext_sales_price* cs_quantity else 0 end) as jun_sales
+       ,sum(case when d_moy = 7 
+               then cs_ext_sales_price* cs_quantity else 0 end) as jul_sales
+       ,sum(case when d_moy = 8 
+               then cs_ext_sales_price* cs_quantity else 0 end) as aug_sales
+       ,sum(case when d_moy = 9 
+               then cs_ext_sales_price* cs_quantity else 0 end) as sep_sales
+       ,sum(case when d_moy = 10 
+               then cs_ext_sales_price* cs_quantity else 0 end) as oct_sales
+       ,sum(case when d_moy = 11
+               then cs_ext_sales_price* cs_quantity else 0 end) as nov_sales
+       ,sum(case when d_moy = 12
+               then cs_ext_sales_price* cs_quantity else 0 end) as dec_sales
+       ,sum(case when d_moy = 1 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
jan_net
+       ,sum(case when d_moy = 2 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
feb_net
+       ,sum(case when d_moy = 3 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
mar_net
+       ,sum(case when d_moy = 4 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
apr_net
+       ,sum(case when d_moy = 5 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
may_net
+       ,sum(case when d_moy = 6 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
jun_net
+       ,sum(case when d_moy = 7 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
jul_net
+       ,sum(case when d_moy = 8 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
aug_net
+       ,sum(case when d_moy = 9 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
sep_net
+       ,sum(case when d_moy = 10 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
oct_net
+       ,sum(case when d_moy = 11
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
nov_net
+       ,sum(case when d_moy = 12
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
dec_net
+     from
+          catalog_sales
+         ,warehouse
+         ,date_dim
+         ,time_dim
+        ,ship_mode
+     where
+            cs_warehouse_sk =  w_warehouse_sk
+        and cs_sold_date_sk = d_date_sk
+        and cs_sold_time_sk = t_time_sk
+       and cs_ship_mode_sk = sm_ship_mode_sk
+        and d_year = 2002
+       and t_time between 49530 AND 49530+28800 
+       and sm_carrier in ('DIAMOND','AIRBORNE')
+     group by 
+        w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+       ,d_year
+     ) 
+ ) x
+ group by 
+        w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+       ,ship_carriers
+       ,year
+ order by w_warehouse_name
+ limit 100
+PREHOOK: type: QUERY
+POSTHOOK: query: explain
+select   
+         w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+        ,ship_carriers
+        ,year
+       ,sum(jan_sales) as jan_sales
+       ,sum(feb_sales) as feb_sales
+       ,sum(mar_sales) as mar_sales
+       ,sum(apr_sales) as apr_sales
+       ,sum(may_sales) as may_sales
+       ,sum(jun_sales) as jun_sales
+       ,sum(jul_sales) as jul_sales
+       ,sum(aug_sales) as aug_sales
+       ,sum(sep_sales) as sep_sales
+       ,sum(oct_sales) as oct_sales
+       ,sum(nov_sales) as nov_sales
+       ,sum(dec_sales) as dec_sales
+       ,sum(jan_sales/w_warehouse_sq_ft) as jan_sales_per_sq_foot
+       ,sum(feb_sales/w_warehouse_sq_ft) as feb_sales_per_sq_foot
+       ,sum(mar_sales/w_warehouse_sq_ft) as mar_sales_per_sq_foot
+       ,sum(apr_sales/w_warehouse_sq_ft) as apr_sales_per_sq_foot
+       ,sum(may_sales/w_warehouse_sq_ft) as may_sales_per_sq_foot
+       ,sum(jun_sales/w_warehouse_sq_ft) as jun_sales_per_sq_foot
+       ,sum(jul_sales/w_warehouse_sq_ft) as jul_sales_per_sq_foot
+       ,sum(aug_sales/w_warehouse_sq_ft) as aug_sales_per_sq_foot
+       ,sum(sep_sales/w_warehouse_sq_ft) as sep_sales_per_sq_foot
+       ,sum(oct_sales/w_warehouse_sq_ft) as oct_sales_per_sq_foot
+       ,sum(nov_sales/w_warehouse_sq_ft) as nov_sales_per_sq_foot
+       ,sum(dec_sales/w_warehouse_sq_ft) as dec_sales_per_sq_foot
+       ,sum(jan_net) as jan_net
+       ,sum(feb_net) as feb_net
+       ,sum(mar_net) as mar_net
+       ,sum(apr_net) as apr_net
+       ,sum(may_net) as may_net
+       ,sum(jun_net) as jun_net
+       ,sum(jul_net) as jul_net
+       ,sum(aug_net) as aug_net
+       ,sum(sep_net) as sep_net
+       ,sum(oct_net) as oct_net
+       ,sum(nov_net) as nov_net
+       ,sum(dec_net) as dec_net
+ from (
+    (select 
+       w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+       ,'DIAMOND' || ',' || 'AIRBORNE' as ship_carriers
+       ,d_year as year
+       ,sum(case when d_moy = 1 
+               then ws_sales_price* ws_quantity else 0 end) as jan_sales
+       ,sum(case when d_moy = 2 
+               then ws_sales_price* ws_quantity else 0 end) as feb_sales
+       ,sum(case when d_moy = 3 
+               then ws_sales_price* ws_quantity else 0 end) as mar_sales
+       ,sum(case when d_moy = 4 
+               then ws_sales_price* ws_quantity else 0 end) as apr_sales
+       ,sum(case when d_moy = 5 
+               then ws_sales_price* ws_quantity else 0 end) as may_sales
+       ,sum(case when d_moy = 6 
+               then ws_sales_price* ws_quantity else 0 end) as jun_sales
+       ,sum(case when d_moy = 7 
+               then ws_sales_price* ws_quantity else 0 end) as jul_sales
+       ,sum(case when d_moy = 8 
+               then ws_sales_price* ws_quantity else 0 end) as aug_sales
+       ,sum(case when d_moy = 9 
+               then ws_sales_price* ws_quantity else 0 end) as sep_sales
+       ,sum(case when d_moy = 10 
+               then ws_sales_price* ws_quantity else 0 end) as oct_sales
+       ,sum(case when d_moy = 11
+               then ws_sales_price* ws_quantity else 0 end) as nov_sales
+       ,sum(case when d_moy = 12
+               then ws_sales_price* ws_quantity else 0 end) as dec_sales
+       ,sum(case when d_moy = 1 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as jan_net
+       ,sum(case when d_moy = 2
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as feb_net
+       ,sum(case when d_moy = 3 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as mar_net
+       ,sum(case when d_moy = 4 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as apr_net
+       ,sum(case when d_moy = 5 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as may_net
+       ,sum(case when d_moy = 6 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as jun_net
+       ,sum(case when d_moy = 7 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as jul_net
+       ,sum(case when d_moy = 8 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as aug_net
+       ,sum(case when d_moy = 9 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as sep_net
+       ,sum(case when d_moy = 10 
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as oct_net
+       ,sum(case when d_moy = 11
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as nov_net
+       ,sum(case when d_moy = 12
+               then ws_net_paid_inc_tax * ws_quantity else 0 end) as dec_net
+     from
+          web_sales
+         ,warehouse
+         ,date_dim
+         ,time_dim
+         ,ship_mode
+     where
+            ws_warehouse_sk =  w_warehouse_sk
+        and ws_sold_date_sk = d_date_sk
+        and ws_sold_time_sk = t_time_sk
+       and ws_ship_mode_sk = sm_ship_mode_sk
+        and d_year = 2002
+       and t_time between 49530 and 49530+28800 
+       and sm_carrier in ('DIAMOND','AIRBORNE')
+     group by 
+        w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+       ,d_year
+       )
+ union all
+    (select 
+       w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+       ,'DIAMOND' || ',' || 'AIRBORNE' as ship_carriers
+       ,d_year as year
+       ,sum(case when d_moy = 1 
+               then cs_ext_sales_price* cs_quantity else 0 end) as jan_sales
+       ,sum(case when d_moy = 2 
+               then cs_ext_sales_price* cs_quantity else 0 end) as feb_sales
+       ,sum(case when d_moy = 3 
+               then cs_ext_sales_price* cs_quantity else 0 end) as mar_sales
+       ,sum(case when d_moy = 4 
+               then cs_ext_sales_price* cs_quantity else 0 end) as apr_sales
+       ,sum(case when d_moy = 5 
+               then cs_ext_sales_price* cs_quantity else 0 end) as may_sales
+       ,sum(case when d_moy = 6 
+               then cs_ext_sales_price* cs_quantity else 0 end) as jun_sales
+       ,sum(case when d_moy = 7 
+               then cs_ext_sales_price* cs_quantity else 0 end) as jul_sales
+       ,sum(case when d_moy = 8 
+               then cs_ext_sales_price* cs_quantity else 0 end) as aug_sales
+       ,sum(case when d_moy = 9 
+               then cs_ext_sales_price* cs_quantity else 0 end) as sep_sales
+       ,sum(case when d_moy = 10 
+               then cs_ext_sales_price* cs_quantity else 0 end) as oct_sales
+       ,sum(case when d_moy = 11
+               then cs_ext_sales_price* cs_quantity else 0 end) as nov_sales
+       ,sum(case when d_moy = 12
+               then cs_ext_sales_price* cs_quantity else 0 end) as dec_sales
+       ,sum(case when d_moy = 1 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
jan_net
+       ,sum(case when d_moy = 2 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
feb_net
+       ,sum(case when d_moy = 3 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
mar_net
+       ,sum(case when d_moy = 4 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
apr_net
+       ,sum(case when d_moy = 5 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
may_net
+       ,sum(case when d_moy = 6 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
jun_net
+       ,sum(case when d_moy = 7 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
jul_net
+       ,sum(case when d_moy = 8 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
aug_net
+       ,sum(case when d_moy = 9 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
sep_net
+       ,sum(case when d_moy = 10 
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
oct_net
+       ,sum(case when d_moy = 11
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
nov_net
+       ,sum(case when d_moy = 12
+               then cs_net_paid_inc_ship_tax * cs_quantity else 0 end) as 
dec_net
+     from
+          catalog_sales
+         ,warehouse
+         ,date_dim
+         ,time_dim
+        ,ship_mode
+     where
+            cs_warehouse_sk =  w_warehouse_sk
+        and cs_sold_date_sk = d_date_sk
+        and cs_sold_time_sk = t_time_sk
+       and cs_ship_mode_sk = sm_ship_mode_sk
+        and d_year = 2002
+       and t_time between 49530 AND 49530+28800 
+       and sm_carrier in ('DIAMOND','AIRBORNE')
+     group by 
+        w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+       ,d_year
+     ) 
+ ) x
+ group by 
+        w_warehouse_name
+       ,w_warehouse_sq_ft
+       ,w_city
+       ,w_county
+       ,w_state
+       ,w_country
+       ,ship_carriers
+       ,year
+ order by w_warehouse_name
+ limit 100
+POSTHOOK: type: QUERY
+STAGE DEPENDENCIES:
+  Stage-2 is a root stage
+  Stage-3 depends on stages: Stage-2
+  Stage-4 depends on stages: Stage-3
+  Stage-5 depends on stages: Stage-4
+  Stage-1 depends on stages: Stage-5
+  Stage-0 depends on stages: Stage-1
+
+STAGE PLANS:
+  Stage: Stage-2
+    Spark
+#### A masked pattern was here ####
+      Vertices:
+        Map 8 
+            Map Operator Tree:
+                TableScan
+                  alias: ship_mode
+                  Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL 
Column stats: NONE
+                  Filter Operator
+                    predicate: ((sm_carrier) IN ('DIAMOND', 'AIRBORNE') and 
sm_ship_mode_sk is not null) (type: boolean)
+                    Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL 
Column stats: NONE
+                    Select Operator
+                      expressions: sm_ship_mode_sk (type: int)
+                      outputColumnNames: _col0
+                      Statistics: Num rows: 1 Data size: 0 Basic stats: 
PARTIAL Column stats: NONE
+                      Spark HashTable Sink Operator
+                        keys:
+                          0 _col2 (type: int)
+                          1 _col0 (type: int)
+            Local Work:
+              Map Reduce Local Work
+        Map 9 
+            Map Operator Tree:
+                TableScan
+                  alias: warehouse
+                  Statistics: Num rows: 27 Data size: 27802 Basic stats: 
COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: w_warehouse_sk is not null (type: boolean)
+                    Statistics: Num rows: 27 Data size: 27802 Basic stats: 
COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: w_warehouse_sk (type: int), 
w_warehouse_name (type: string), w_warehouse_sq_ft (type: int), w_city (type: 
string), w_county (type: string), w_state (type: string), w_country (type: 
string)
+                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6
+                      Statistics: Num rows: 27 Data size: 27802 Basic stats: 
COMPLETE Column stats: NONE
+                      Spark HashTable Sink Operator
+                        keys:
+                          0 _col3 (type: int)
+                          1 _col0 (type: int)
+            Local Work:
+              Map Reduce Local Work
+
+  Stage: Stage-3
+    Spark
+#### A masked pattern was here ####
+      Vertices:
+        Map 6 
+            Map Operator Tree:
+                TableScan
+                  alias: time_dim
+                  Statistics: Num rows: 86400 Data size: 40694400 Basic stats: 
COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: (t_time BETWEEN 49530 AND 78330 and t_time_sk 
is not null) (type: boolean)
+                    Statistics: Num rows: 9600 Data size: 4521600 Basic stats: 
COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: t_time_sk (type: int)
+                      outputColumnNames: _col0
+                      Statistics: Num rows: 9600 Data size: 4521600 Basic 
stats: COMPLETE Column stats: NONE
+                      Spark HashTable Sink Operator
+                        keys:
+                          0 _col1 (type: int)
+                          1 _col0 (type: int)
+            Local Work:
+              Map Reduce Local Work
+
+  Stage: Stage-4
+    Spark
+#### A masked pattern was here ####
+      Vertices:
+        Map 15 
+            Map Operator Tree:
+                TableScan
+                  alias: ship_mode
+                  Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL 
Column stats: NONE
+                  Filter Operator
+                    predicate: ((sm_carrier) IN ('DIAMOND', 'AIRBORNE') and 
sm_ship_mode_sk is not null) (type: boolean)
+                    Statistics: Num rows: 1 Data size: 0 Basic stats: PARTIAL 
Column stats: NONE
+                    Select Operator
+                      expressions: sm_ship_mode_sk (type: int)
+                      outputColumnNames: _col0
+                      Statistics: Num rows: 1 Data size: 0 Basic stats: 
PARTIAL Column stats: NONE
+                      Spark HashTable Sink Operator
+                        keys:
+                          0 _col2 (type: int)
+                          1 _col0 (type: int)
+            Local Work:
+              Map Reduce Local Work
+        Map 16 
+            Map Operator Tree:
+                TableScan
+                  alias: warehouse
+                  Statistics: Num rows: 27 Data size: 27802 Basic stats: 
COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: w_warehouse_sk is not null (type: boolean)
+                    Statistics: Num rows: 27 Data size: 27802 Basic stats: 
COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: w_warehouse_sk (type: int), 
w_warehouse_name (type: string), w_warehouse_sq_ft (type: int), w_city (type: 
string), w_county (type: string), w_state (type: string), w_country (type: 
string)
+                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6
+                      Statistics: Num rows: 27 Data size: 27802 Basic stats: 
COMPLETE Column stats: NONE
+                      Spark HashTable Sink Operator
+                        keys:
+                          0 _col3 (type: int)
+                          1 _col0 (type: int)
+            Local Work:
+              Map Reduce Local Work
+
+  Stage: Stage-5
+    Spark
+#### A masked pattern was here ####
+      Vertices:
+        Map 13 
+            Map Operator Tree:
+                TableScan
+                  alias: time_dim
+                  Statistics: Num rows: 86400 Data size: 40694400 Basic stats: 
COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: (t_time BETWEEN 49530 AND 78330 and t_time_sk 
is not null) (type: boolean)
+                    Statistics: Num rows: 9600 Data size: 4521600 Basic stats: 
COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: t_time_sk (type: int)
+                      outputColumnNames: _col0
+                      Statistics: Num rows: 9600 Data size: 4521600 Basic 
stats: COMPLETE Column stats: NONE
+                      Spark HashTable Sink Operator
+                        keys:
+                          0 _col1 (type: int)
+                          1 _col0 (type: int)
+            Local Work:
+              Map Reduce Local Work
+
+  Stage: Stage-1
+    Spark
+      Edges:
+        Reducer 11 <- Map 10 (PARTITION-LEVEL SORT, 336), Map 14 
(PARTITION-LEVEL SORT, 336)
+        Reducer 12 <- Reducer 11 (GROUP, 447)
+        Reducer 2 <- Map 1 (PARTITION-LEVEL SORT, 169), Map 7 (PARTITION-LEVEL 
SORT, 169)
+        Reducer 3 <- Reducer 2 (GROUP, 224)
+        Reducer 4 <- Reducer 12 (GROUP, 336), Reducer 3 (GROUP, 336)
+        Reducer 5 <- Reducer 4 (SORT, 1)
+#### A masked pattern was here ####
+      Vertices:
+        Map 1 
+            Map Operator Tree:
+                TableScan
+                  alias: web_sales
+                  Statistics: Num rows: 144002668 Data size: 19580198212 Basic 
stats: COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: (ws_ship_mode_sk is not null and 
ws_sold_date_sk is not null and ws_sold_time_sk is not null and ws_warehouse_sk 
is not null) (type: boolean)
+                    Statistics: Num rows: 144002668 Data size: 19580198212 
Basic stats: COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: ws_sold_date_sk (type: int), 
ws_sold_time_sk (type: int), ws_ship_mode_sk (type: int), ws_warehouse_sk 
(type: int), ws_quantity (type: int), ws_sales_price (type: decimal(7,2)), 
ws_net_paid_inc_tax (type: decimal(7,2))
+                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6
+                      Statistics: Num rows: 144002668 Data size: 19580198212 
Basic stats: COMPLETE Column stats: NONE
+                      Map Join Operator
+                        condition map:
+                             Inner Join 0 to 1
+                        keys:
+                          0 _col1 (type: int)
+                          1 _col0 (type: int)
+                        outputColumnNames: _col0, _col2, _col3, _col4, _col5, 
_col6
+                        input vertices:
+                          1 Map 6
+                        Statistics: Num rows: 158402938 Data size: 21538218500 
Basic stats: COMPLETE Column stats: NONE
+                        Reduce Output Operator
+                          key expressions: _col0 (type: int)
+                          sort order: +
+                          Map-reduce partition columns: _col0 (type: int)
+                          Statistics: Num rows: 158402938 Data size: 
21538218500 Basic stats: COMPLETE Column stats: NONE
+                          value expressions: _col2 (type: int), _col3 (type: 
int), _col4 (type: int), _col5 (type: decimal(7,2)), _col6 (type: decimal(7,2))
+            Local Work:
+              Map Reduce Local Work
+        Map 10 
+            Map Operator Tree:
+                TableScan
+                  alias: catalog_sales
+                  Statistics: Num rows: 287989836 Data size: 38999608952 Basic 
stats: COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: (cs_ship_mode_sk is not null and 
cs_sold_date_sk is not null and cs_sold_time_sk is not null and cs_warehouse_sk 
is not null) (type: boolean)
+                    Statistics: Num rows: 287989836 Data size: 38999608952 
Basic stats: COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: cs_sold_date_sk (type: int), 
cs_sold_time_sk (type: int), cs_ship_mode_sk (type: int), cs_warehouse_sk 
(type: int), cs_quantity (type: int), cs_ext_sales_price (type: decimal(7,2)), 
cs_net_paid_inc_ship_tax (type: decimal(7,2))
+                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6
+                      Statistics: Num rows: 287989836 Data size: 38999608952 
Basic stats: COMPLETE Column stats: NONE
+                      Map Join Operator
+                        condition map:
+                             Inner Join 0 to 1
+                        keys:
+                          0 _col1 (type: int)
+                          1 _col0 (type: int)
+                        outputColumnNames: _col0, _col2, _col3, _col4, _col5, 
_col6
+                        input vertices:
+                          1 Map 13
+                        Statistics: Num rows: 316788826 Data size: 42899570777 
Basic stats: COMPLETE Column stats: NONE
+                        Reduce Output Operator
+                          key expressions: _col0 (type: int)
+                          sort order: +
+                          Map-reduce partition columns: _col0 (type: int)
+                          Statistics: Num rows: 316788826 Data size: 
42899570777 Basic stats: COMPLETE Column stats: NONE
+                          value expressions: _col2 (type: int), _col3 (type: 
int), _col4 (type: int), _col5 (type: decimal(7,2)), _col6 (type: decimal(7,2))
+            Local Work:
+              Map Reduce Local Work
+        Map 14 
+            Map Operator Tree:
+                TableScan
+                  alias: date_dim
+                  Statistics: Num rows: 73049 Data size: 81741831 Basic stats: 
COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: ((d_year = 2002) and d_date_sk is not null) 
(type: boolean)
+                    Statistics: Num rows: 36524 Data size: 40870356 Basic 
stats: COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: d_date_sk (type: int), d_moy (type: int)
+                      outputColumnNames: _col0, _col2
+                      Statistics: Num rows: 36524 Data size: 40870356 Basic 
stats: COMPLETE Column stats: NONE
+                      Reduce Output Operator
+                        key expressions: _col0 (type: int)
+                        sort order: +
+                        Map-reduce partition columns: _col0 (type: int)
+                        Statistics: Num rows: 36524 Data size: 40870356 Basic 
stats: COMPLETE Column stats: NONE
+                        value expressions: _col2 (type: int)
+        Map 7 
+            Map Operator Tree:
+                TableScan
+                  alias: date_dim
+                  Statistics: Num rows: 73049 Data size: 81741831 Basic stats: 
COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: ((d_year = 2002) and d_date_sk is not null) 
(type: boolean)
+                    Statistics: Num rows: 36524 Data size: 40870356 Basic 
stats: COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: d_date_sk (type: int), d_moy (type: int)
+                      outputColumnNames: _col0, _col2
+                      Statistics: Num rows: 36524 Data size: 40870356 Basic 
stats: COMPLETE Column stats: NONE
+                      Reduce Output Operator
+                        key expressions: _col0 (type: int)
+                        sort order: +
+                        Map-reduce partition columns: _col0 (type: int)
+                        Statistics: Num rows: 36524 Data size: 40870356 Basic 
stats: COMPLETE Column stats: NONE
+                        value expressions: _col2 (type: int)
+        Reducer 11 
+            Local Work:
+              Map Reduce Local Work
+            Reduce Operator Tree:
+              Join Operator
+                condition map:
+                     Inner Join 0 to 1
+                keys:
+                  0 _col0 (type: int)
+                  1 _col0 (type: int)
+                outputColumnNames: _col2, _col3, _col4, _col5, _col6, _col11
+                Statistics: Num rows: 348467716 Data size: 47189528877 Basic 
stats: COMPLETE Column stats: NONE
+                Map Join Operator
+                  condition map:
+                       Inner Join 0 to 1
+                  keys:
+                    0 _col2 (type: int)
+                    1 _col0 (type: int)
+                  outputColumnNames: _col3, _col4, _col5, _col6, _col11
+                  input vertices:
+                    1 Map 15
+                  Statistics: Num rows: 383314495 Data size: 51908482889 Basic 
stats: COMPLETE Column stats: NONE
+                  Map Join Operator
+                    condition map:
+                         Inner Join 0 to 1
+                    keys:
+                      0 _col3 (type: int)
+                      1 _col0 (type: int)
+                    outputColumnNames: _col4, _col5, _col6, _col11, _col15, 
_col16, _col17, _col18, _col19, _col20
+                    input vertices:
+                      1 Map 16
+                    Statistics: Num rows: 421645953 Data size: 57099332415 
Basic stats: COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: _col15 (type: string), _col16 (type: int), 
_col17 (type: string), _col18 (type: string), _col19 (type: string), _col20 
(type: string), CASE WHEN ((_col11 = 1)) THEN ((_col5 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 2)) 
THEN ((_col5 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 3)) THEN ((_col5 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 4)) 
THEN ((_col5 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 5)) THEN ((_col5 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 6)) 
THEN ((_col5 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 7)) THEN ((_col5 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 8)) 
THEN ((_col5 * CAST( _col4 AS decimal(10,0))))
  ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 9)) THEN ((_col5 * 
CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN 
((_col11 = 10)) THEN ((_col5 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END 
(type: decimal(18,2)), CASE WHEN ((_col11 = 11)) THEN ((_col5 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 12)) 
THEN ((_col5 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 1)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 2)) 
THEN ((_col6 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 3)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 4)) 
THEN ((_col6 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 5)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: d
 ecimal(18,2)), CASE WHEN ((_col11 = 6)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 7)) 
THEN ((_col6 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 8)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 9)) 
THEN ((_col6 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 10)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 11)) 
THEN ((_col6 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 12)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2))
+                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29
+                      Statistics: Num rows: 421645953 Data size: 57099332415 
Basic stats: COMPLETE Column stats: NONE
+                      Group By Operator
+                        aggregations: sum(_col6), sum(_col7), sum(_col8), 
sum(_col9), sum(_col10), sum(_col11), sum(_col12), sum(_col13), sum(_col14), 
sum(_col15), sum(_col16), sum(_col17), sum(_col18), sum(_col19), sum(_col20), 
sum(_col21), sum(_col22), sum(_col23), sum(_col24), sum(_col25), sum(_col26), 
sum(_col27), sum(_col28), sum(_col29)
+                        keys: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string)
+                        mode: hash
+                        outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29
+                        Statistics: Num rows: 421645953 Data size: 57099332415 
Basic stats: COMPLETE Column stats: NONE
+                        Reduce Output Operator
+                          key expressions: _col0 (type: string), _col1 (type: 
int), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 
(type: string)
+                          sort order: ++++++
+                          Map-reduce partition columns: _col0 (type: string), 
_col1 (type: int), _col2 (type: string), _col3 (type: string), _col4 (type: 
string), _col5 (type: string)
+                          Statistics: Num rows: 421645953 Data size: 
57099332415 Basic stats: COMPLETE Column stats: NONE
+                          value expressions: _col6 (type: decimal(28,2)), 
_col7 (type: decimal(28,2)), _col8 (type: decimal(28,2)), _col9 (type: 
decimal(28,2)), _col10 (type: decimal(28,2)), _col11 (type: decimal(28,2)), 
_col12 (type: decimal(28,2)), _col13 (type: decimal(28,2)), _col14 (type: 
decimal(28,2)), _col15 (type: decimal(28,2)), _col16 (type: decimal(28,2)), 
_col17 (type: decimal(28,2)), _col18 (type: decimal(28,2)), _col19 (type: 
decimal(28,2)), _col20 (type: decimal(28,2)), _col21 (type: decimal(28,2)), 
_col22 (type: decimal(28,2)), _col23 (type: decimal(28,2)), _col24 (type: 
decimal(28,2)), _col25 (type: decimal(28,2)), _col26 (type: decimal(28,2)), 
_col27 (type: decimal(28,2)), _col28 (type: decimal(28,2)), _col29 (type: 
decimal(28,2))
+        Reducer 12 
+            Reduce Operator Tree:
+              Group By Operator
+                aggregations: sum(VALUE._col0), sum(VALUE._col1), 
sum(VALUE._col2), sum(VALUE._col3), sum(VALUE._col4), sum(VALUE._col5), 
sum(VALUE._col6), sum(VALUE._col7), sum(VALUE._col8), sum(VALUE._col9), 
sum(VALUE._col10), sum(VALUE._col11), sum(VALUE._col12), sum(VALUE._col13), 
sum(VALUE._col14), sum(VALUE._col15), sum(VALUE._col16), sum(VALUE._col17), 
sum(VALUE._col18), sum(VALUE._col19), sum(VALUE._col20), sum(VALUE._col21), 
sum(VALUE._col22), sum(VALUE._col23)
+                keys: KEY._col0 (type: string), KEY._col1 (type: int), 
KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), 
KEY._col5 (type: string)
+                mode: mergepartial
+                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29
+                Statistics: Num rows: 210822976 Data size: 28549666139 Basic 
stats: COMPLETE Column stats: NONE
+                Select Operator
+                  expressions: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), _col6 (type: decimal(28,2)), _col7 (type: decimal(28,2)), _col8 (type: 
decimal(28,2)), _col9 (type: decimal(28,2)), _col10 (type: decimal(28,2)), 
_col11 (type: decimal(28,2)), _col12 (type: decimal(28,2)), _col13 (type: 
decimal(28,2)), _col14 (type: decimal(28,2)), _col15 (type: decimal(28,2)), 
_col16 (type: decimal(28,2)), _col17 (type: decimal(28,2)), (_col6 / CAST( 
_col1 AS decimal(10,0))) (type: decimal(38,12)), (_col7 / CAST( _col1 AS 
decimal(10,0))) (type: decimal(38,12)), (_col8 / CAST( _col1 AS decimal(10,0))) 
(type: decimal(38,12)), (_col9 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col10 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col11 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col12 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col13 / CAST( _col1 AS decim
 al(10,0))) (type: decimal(38,12)), (_col14 / CAST( _col1 AS decimal(10,0))) 
(type: decimal(38,12)), (_col15 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col16 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col17 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), _col18 (type: decimal(28,2)), _col19 (type: decimal(28,2)), 
_col20 (type: decimal(28,2)), _col21 (type: decimal(28,2)), _col22 (type: 
decimal(28,2)), _col23 (type: decimal(28,2)), _col24 (type: decimal(28,2)), 
_col25 (type: decimal(28,2)), _col26 (type: decimal(28,2)), _col27 (type: 
decimal(28,2)), _col28 (type: decimal(28,2)), _col29 (type: decimal(28,2))
+                  outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, _col35, 
_col36, _col37, _col38, _col39, _col40, _col41
+                  Statistics: Num rows: 316240137 Data size: 42883351482 Basic 
stats: COMPLETE Column stats: NONE
+                  Group By Operator
+                    aggregations: sum(_col6), sum(_col7), sum(_col8), 
sum(_col9), sum(_col10), sum(_col11), sum(_col12), sum(_col13), sum(_col14), 
sum(_col15), sum(_col16), sum(_col17), sum(_col18), sum(_col19), sum(_col20), 
sum(_col21), sum(_col22), sum(_col23), sum(_col24), sum(_col25), sum(_col26), 
sum(_col27), sum(_col28), sum(_col29), sum(_col30), sum(_col31), sum(_col32), 
sum(_col33), sum(_col34), sum(_col35), sum(_col36), sum(_col37), sum(_col38), 
sum(_col39), sum(_col40), sum(_col41)
+                    keys: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string)
+                    mode: hash
+                    outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, 
_col35, _col36, _col37, _col38, _col39, _col40, _col41
+                    Statistics: Num rows: 316240137 Data size: 42883351482 
Basic stats: COMPLETE Column stats: NONE
+                    Reduce Output Operator
+                      key expressions: _col0 (type: string), _col1 (type: 
int), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 
(type: string)
+                      sort order: ++++++
+                      Map-reduce partition columns: _col0 (type: string), 
_col1 (type: int), _col2 (type: string), _col3 (type: string), _col4 (type: 
string), _col5 (type: string)
+                      Statistics: Num rows: 316240137 Data size: 42883351482 
Basic stats: COMPLETE Column stats: NONE
+                      TopN Hash Memory Usage: 0.1
+                      value expressions: _col6 (type: decimal(38,2)), _col7 
(type: decimal(38,2)), _col8 (type: decimal(38,2)), _col9 (type: 
decimal(38,2)), _col10 (type: decimal(38,2)), _col11 (type: decimal(38,2)), 
_col12 (type: decimal(38,2)), _col13 (type: decimal(38,2)), _col14 (type: 
decimal(38,2)), _col15 (type: decimal(38,2)), _col16 (type: decimal(38,2)), 
_col17 (type: decimal(38,2)), _col18 (type: decimal(38,12)), _col19 (type: 
decimal(38,12)), _col20 (type: decimal(38,12)), _col21 (type: decimal(38,12)), 
_col22 (type: decimal(38,12)), _col23 (type: decimal(38,12)), _col24 (type: 
decimal(38,12)), _col25 (type: decimal(38,12)), _col26 (type: decimal(38,12)), 
_col27 (type: decimal(38,12)), _col28 (type: decimal(38,12)), _col29 (type: 
decimal(38,12)), _col30 (type: decimal(38,2)), _col31 (type: decimal(38,2)), 
_col32 (type: decimal(38,2)), _col33 (type: decimal(38,2)), _col34 (type: 
decimal(38,2)), _col35 (type: decimal(38,2)), _col36 (type: decimal(38,2)), 
_col37 (type: deci
 mal(38,2)), _col38 (type: decimal(38,2)), _col39 (type: decimal(38,2)), _col40 
(type: decimal(38,2)), _col41 (type: decimal(38,2))
+        Reducer 2 
+            Local Work:
+              Map Reduce Local Work
+            Reduce Operator Tree:
+              Join Operator
+                condition map:
+                     Inner Join 0 to 1
+                keys:
+                  0 _col0 (type: int)
+                  1 _col0 (type: int)
+                outputColumnNames: _col2, _col3, _col4, _col5, _col6, _col11
+                Statistics: Num rows: 174243235 Data size: 23692040863 Basic 
stats: COMPLETE Column stats: NONE
+                Map Join Operator
+                  condition map:
+                       Inner Join 0 to 1
+                  keys:
+                    0 _col2 (type: int)
+                    1 _col0 (type: int)
+                  outputColumnNames: _col3, _col4, _col5, _col6, _col11
+                  input vertices:
+                    1 Map 8
+                  Statistics: Num rows: 191667562 Data size: 26061245514 Basic 
stats: COMPLETE Column stats: NONE
+                  Map Join Operator
+                    condition map:
+                         Inner Join 0 to 1
+                    keys:
+                      0 _col3 (type: int)
+                      1 _col0 (type: int)
+                    outputColumnNames: _col4, _col5, _col6, _col11, _col15, 
_col16, _col17, _col18, _col19, _col20
+                    input vertices:
+                      1 Map 9
+                    Statistics: Num rows: 210834322 Data size: 28667370686 
Basic stats: COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: _col15 (type: string), _col16 (type: int), 
_col17 (type: string), _col18 (type: string), _col19 (type: string), _col20 
(type: string), CASE WHEN ((_col11 = 1)) THEN ((_col5 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 2)) 
THEN ((_col5 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 3)) THEN ((_col5 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 4)) 
THEN ((_col5 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 5)) THEN ((_col5 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 6)) 
THEN ((_col5 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 7)) THEN ((_col5 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 8)) 
THEN ((_col5 * CAST( _col4 AS decimal(10,0))))
  ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 9)) THEN ((_col5 * 
CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN 
((_col11 = 10)) THEN ((_col5 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END 
(type: decimal(18,2)), CASE WHEN ((_col11 = 11)) THEN ((_col5 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 12)) 
THEN ((_col5 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 1)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 2)) 
THEN ((_col6 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 3)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 4)) 
THEN ((_col6 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 5)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: d
 ecimal(18,2)), CASE WHEN ((_col11 = 6)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 7)) 
THEN ((_col6 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 8)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 9)) 
THEN ((_col6 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 10)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2)), CASE WHEN ((_col11 = 11)) 
THEN ((_col6 * CAST( _col4 AS decimal(10,0)))) ELSE (0) END (type: 
decimal(18,2)), CASE WHEN ((_col11 = 12)) THEN ((_col6 * CAST( _col4 AS 
decimal(10,0)))) ELSE (0) END (type: decimal(18,2))
+                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29
+                      Statistics: Num rows: 210834322 Data size: 28667370686 
Basic stats: COMPLETE Column stats: NONE
+                      Group By Operator
+                        aggregations: sum(_col6), sum(_col7), sum(_col8), 
sum(_col9), sum(_col10), sum(_col11), sum(_col12), sum(_col13), sum(_col14), 
sum(_col15), sum(_col16), sum(_col17), sum(_col18), sum(_col19), sum(_col20), 
sum(_col21), sum(_col22), sum(_col23), sum(_col24), sum(_col25), sum(_col26), 
sum(_col27), sum(_col28), sum(_col29)
+                        keys: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string)
+                        mode: hash
+                        outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29
+                        Statistics: Num rows: 210834322 Data size: 28667370686 
Basic stats: COMPLETE Column stats: NONE
+                        Reduce Output Operator
+                          key expressions: _col0 (type: string), _col1 (type: 
int), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 
(type: string)
+                          sort order: ++++++
+                          Map-reduce partition columns: _col0 (type: string), 
_col1 (type: int), _col2 (type: string), _col3 (type: string), _col4 (type: 
string), _col5 (type: string)
+                          Statistics: Num rows: 210834322 Data size: 
28667370686 Basic stats: COMPLETE Column stats: NONE
+                          value expressions: _col6 (type: decimal(28,2)), 
_col7 (type: decimal(28,2)), _col8 (type: decimal(28,2)), _col9 (type: 
decimal(28,2)), _col10 (type: decimal(28,2)), _col11 (type: decimal(28,2)), 
_col12 (type: decimal(28,2)), _col13 (type: decimal(28,2)), _col14 (type: 
decimal(28,2)), _col15 (type: decimal(28,2)), _col16 (type: decimal(28,2)), 
_col17 (type: decimal(28,2)), _col18 (type: decimal(28,2)), _col19 (type: 
decimal(28,2)), _col20 (type: decimal(28,2)), _col21 (type: decimal(28,2)), 
_col22 (type: decimal(28,2)), _col23 (type: decimal(28,2)), _col24 (type: 
decimal(28,2)), _col25 (type: decimal(28,2)), _col26 (type: decimal(28,2)), 
_col27 (type: decimal(28,2)), _col28 (type: decimal(28,2)), _col29 (type: 
decimal(28,2))
+        Reducer 3 
+            Reduce Operator Tree:
+              Group By Operator
+                aggregations: sum(VALUE._col0), sum(VALUE._col1), 
sum(VALUE._col2), sum(VALUE._col3), sum(VALUE._col4), sum(VALUE._col5), 
sum(VALUE._col6), sum(VALUE._col7), sum(VALUE._col8), sum(VALUE._col9), 
sum(VALUE._col10), sum(VALUE._col11), sum(VALUE._col12), sum(VALUE._col13), 
sum(VALUE._col14), sum(VALUE._col15), sum(VALUE._col16), sum(VALUE._col17), 
sum(VALUE._col18), sum(VALUE._col19), sum(VALUE._col20), sum(VALUE._col21), 
sum(VALUE._col22), sum(VALUE._col23)
+                keys: KEY._col0 (type: string), KEY._col1 (type: int), 
KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), 
KEY._col5 (type: string)
+                mode: mergepartial
+                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29
+                Statistics: Num rows: 105417161 Data size: 14333685343 Basic 
stats: COMPLETE Column stats: NONE
+                Select Operator
+                  expressions: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), _col6 (type: decimal(28,2)), _col7 (type: decimal(28,2)), _col8 (type: 
decimal(28,2)), _col9 (type: decimal(28,2)), _col10 (type: decimal(28,2)), 
_col11 (type: decimal(28,2)), _col12 (type: decimal(28,2)), _col13 (type: 
decimal(28,2)), _col14 (type: decimal(28,2)), _col15 (type: decimal(28,2)), 
_col16 (type: decimal(28,2)), _col17 (type: decimal(28,2)), (_col6 / CAST( 
_col1 AS decimal(10,0))) (type: decimal(38,12)), (_col7 / CAST( _col1 AS 
decimal(10,0))) (type: decimal(38,12)), (_col8 / CAST( _col1 AS decimal(10,0))) 
(type: decimal(38,12)), (_col9 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col10 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col11 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col12 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col13 / CAST( _col1 AS decim
 al(10,0))) (type: decimal(38,12)), (_col14 / CAST( _col1 AS decimal(10,0))) 
(type: decimal(38,12)), (_col15 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col16 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), (_col17 / CAST( _col1 AS decimal(10,0))) (type: 
decimal(38,12)), _col18 (type: decimal(28,2)), _col19 (type: decimal(28,2)), 
_col20 (type: decimal(28,2)), _col21 (type: decimal(28,2)), _col22 (type: 
decimal(28,2)), _col23 (type: decimal(28,2)), _col24 (type: decimal(28,2)), 
_col25 (type: decimal(28,2)), _col26 (type: decimal(28,2)), _col27 (type: 
decimal(28,2)), _col28 (type: decimal(28,2)), _col29 (type: decimal(28,2))
+                  outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, _col35, 
_col36, _col37, _col38, _col39, _col40, _col41
+                  Statistics: Num rows: 316240137 Data size: 42883351482 Basic 
stats: COMPLETE Column stats: NONE
+                  Group By Operator
+                    aggregations: sum(_col6), sum(_col7), sum(_col8), 
sum(_col9), sum(_col10), sum(_col11), sum(_col12), sum(_col13), sum(_col14), 
sum(_col15), sum(_col16), sum(_col17), sum(_col18), sum(_col19), sum(_col20), 
sum(_col21), sum(_col22), sum(_col23), sum(_col24), sum(_col25), sum(_col26), 
sum(_col27), sum(_col28), sum(_col29), sum(_col30), sum(_col31), sum(_col32), 
sum(_col33), sum(_col34), sum(_col35), sum(_col36), sum(_col37), sum(_col38), 
sum(_col39), sum(_col40), sum(_col41)
+                    keys: _col0 (type: string), _col1 (type: int), _col2 
(type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string)
+                    mode: hash
+                    outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, 
_col35, _col36, _col37, _col38, _col39, _col40, _col41
+                    Statistics: Num rows: 316240137 Data size: 42883351482 
Basic stats: COMPLETE Column stats: NONE
+                    Reduce Output Operator
+                      key expressions: _col0 (type: string), _col1 (type: 
int), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 
(type: string)
+                      sort order: ++++++
+                      Map-reduce partition columns: _col0 (type: string), 
_col1 (type: int), _col2 (type: string), _col3 (type: string), _col4 (type: 
string), _col5 (type: string)
+                      Statistics: Num rows: 316240137 Data size: 42883351482 
Basic stats: COMPLETE Column stats: NONE
+                      TopN Hash Memory Usage: 0.1
+                      value expressions: _col6 (type: decimal(38,2)), _col7 
(type: decimal(38,2)), _col8 (type: decimal(38,2)), _col9 (type: 
decimal(38,2)), _col10 (type: decimal(38,2)), _col11 (type: decimal(38,2)), 
_col12 (type: decimal(38,2)), _col13 (type: decimal(38,2)), _col14 (type: 
decimal(38,2)), _col15 (type: decimal(38,2)), _col16 (type: decimal(38,2)), 
_col17 (type: decimal(38,2)), _col18 (type: decimal(38,12)), _col19 (type: 
decimal(38,12)), _col20 (type: decimal(38,12)), _col21 (type: decimal(38,12)), 
_col22 (type: decimal(38,12)), _col23 (type: decimal(38,12)), _col24 (type: 
decimal(38,12)), _col25 (type: decimal(38,12)), _col26 (type: decimal(38,12)), 
_col27 (type: decimal(38,12)), _col28 (type: decimal(38,12)), _col29 (type: 
decimal(38,12)), _col30 (type: decimal(38,2)), _col31 (type: decimal(38,2)), 
_col32 (type: decimal(38,2)), _col33 (type: decimal(38,2)), _col34 (type: 
decimal(38,2)), _col35 (type: decimal(38,2)), _col36 (type: decimal(38,2)), 
_col37 (type: deci
 mal(38,2)), _col38 (type: decimal(38,2)), _col39 (type: decimal(38,2)), _col40 
(type: decimal(38,2)), _col41 (type: decimal(38,2))
+        Reducer 4 
+            Reduce Operator Tree:
+              Group By Operator
+                aggregations: sum(VALUE._col0), sum(VALUE._col1), 
sum(VALUE._col2), sum(VALUE._col3), sum(VALUE._col4), sum(VALUE._col5), 
sum(VALUE._col6), sum(VALUE._col7), sum(VALUE._col8), sum(VALUE._col9), 
sum(VALUE._col10), sum(VALUE._col11), sum(VALUE._col12), sum(VALUE._col13), 
sum(VALUE._col14), sum(VALUE._col15), sum(VALUE._col16), sum(VALUE._col17), 
sum(VALUE._col18), sum(VALUE._col19), sum(VALUE._col20), sum(VALUE._col21), 
sum(VALUE._col22), sum(VALUE._col23), sum(VALUE._col24), sum(VALUE._col25), 
sum(VALUE._col26), sum(VALUE._col27), sum(VALUE._col28), sum(VALUE._col29), 
sum(VALUE._col30), sum(VALUE._col31), sum(VALUE._col32), sum(VALUE._col33), 
sum(VALUE._col34), sum(VALUE._col35)
+                keys: KEY._col0 (type: string), KEY._col1 (type: int), 
KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), 
KEY._col5 (type: string)
+                mode: mergepartial
+                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, _col35, 
_col36, _col37, _col38, _col39, _col40, _col41
+                Statistics: Num rows: 158120068 Data size: 21441675673 Basic 
stats: COMPLETE Column stats: NONE
+                Reduce Output Operator
+                  key expressions: _col0 (type: string)
+                  sort order: +
+                  Statistics: Num rows: 158120068 Data size: 21441675673 Basic 
stats: COMPLETE Column stats: NONE
+                  TopN Hash Memory Usage: 0.1
+                  value expressions: _col1 (type: int), _col2 (type: string), 
_col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: 
decimal(38,2)), _col7 (type: decimal(38,2)), _col8 (type: decimal(38,2)), _col9 
(type: decimal(38,2)), _col10 (type: decimal(38,2)), _col11 (type: 
decimal(38,2)), _col12 (type: decimal(38,2)), _col13 (type: decimal(38,2)), 
_col14 (type: decimal(38,2)), _col15 (type: decimal(38,2)), _col16 (type: 
decimal(38,2)), _col17 (type: decimal(38,2)), _col18 (type: decimal(38,12)), 
_col19 (type: decimal(38,12)), _col20 (type: decimal(38,12)), _col21 (type: 
decimal(38,12)), _col22 (type: decimal(38,12)), _col23 (type: decimal(38,12)), 
_col24 (type: decimal(38,12)), _col25 (type: decimal(38,12)), _col26 (type: 
decimal(38,12)), _col27 (type: decimal(38,12)), _col28 (type: decimal(38,12)), 
_col29 (type: decimal(38,12)), _col30 (type: decimal(38,2)), _col31 (type: 
decimal(38,2)), _col32 (type: decimal(38,2)), _col33 (type: decimal(38,2)), 
_col3
 4 (type: decimal(38,2)), _col35 (type: decimal(38,2)), _col36 (type: 
decimal(38,2)), _col37 (type: decimal(38,2)), _col38 (type: decimal(38,2)), 
_col39 (type: decimal(38,2)), _col40 (type: decimal(38,2)), _col41 (type: 
decimal(38,2))
+        Reducer 5 
+            Reduce Operator Tree:
+              Select Operator
+                expressions: KEY.reducesinkkey0 (type: string), VALUE._col0 
(type: int), VALUE._col1 (type: string), VALUE._col2 (type: string), 
VALUE._col3 (type: string), VALUE._col4 (type: string), VALUE._col5 (type: 
decimal(38,2)), VALUE._col6 (type: decimal(38,2)), VALUE._col7 (type: 
decimal(38,2)), VALUE._col8 (type: decimal(38,2)), VALUE._col9 (type: 
decimal(38,2)), VALUE._col10 (type: decimal(38,2)), VALUE._col11 (type: 
decimal(38,2)), VALUE._col12 (type: decimal(38,2)), VALUE._col13 (type: 
decimal(38,2)), VALUE._col14 (type: decimal(38,2)), VALUE._col15 (type: 
decimal(38,2)), VALUE._col16 (type: decimal(38,2)), VALUE._col17 (type: 
decimal(38,12)), VALUE._col18 (type: decimal(38,12)), VALUE._col19 (type: 
decimal(38,12)), VALUE._col20 (type: decimal(38,12)), VALUE._col21 (type: 
decimal(38,12)), VALUE._col22 (type: decimal(38,12)), VALUE._col23 (type: 
decimal(38,12)), VALUE._col24 (type: decimal(38,12)), VALUE._col25 (type: 
decimal(38,12)), VALUE._col26 (type: decimal(38,12)),
  VALUE._col27 (type: decimal(38,12)), VALUE._col28 (type: decimal(38,12)), 
VALUE._col29 (type: decimal(38,2)), VALUE._col30 (type: decimal(38,2)), 
VALUE._col31 (type: decimal(38,2)), VALUE._col32 (type: decimal(38,2)), 
VALUE._col33 (type: decimal(38,2)), VALUE._col34 (type: decimal(38,2)), 
VALUE._col35 (type: decimal(38,2)), VALUE._col36 (type: decimal(38,2)), 
VALUE._col37 (type: decimal(38,2)), VALUE._col38 (type: decimal(38,2)), 
VALUE._col39 (type: decimal(38,2)), VALUE._col40 (type: decimal(38,2))
+                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, _col15, 
_col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, _col25, 
_col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, _col35, 
_col36, _col37, _col38, _col39, _col40, _col41
+                Statistics: Num rows: 158120068 Data size: 21441675673 Basic 
stats: COMPLETE Column stats: NONE
+                Limit
+                  Number of rows: 100
+                  Statistics: Num rows: 100 Data size: 13500 Basic stats: 
COMPLETE Column stats: NONE
+                  Select Operator
+                    expressions: _col0 (type: string), _col1 (type: int), 
_col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: 
string), 'DIAMOND,AIRBORNE' (type: string), 2002 (type: int), _col6 (type: 
decimal(38,2)), _col7 (type: decimal(38,2)), _col8 (type: decimal(38,2)), _col9 
(type: decimal(38,2)), _col10 (type: decimal(38,2)), _col11 (type: 
decimal(38,2)), _col12 (type: decimal(38,2)), _col13 (type: decimal(38,2)), 
_col14 (type: decimal(38,2)), _col15 (type: decimal(38,2)), _col16 (type: 
decimal(38,2)), _col17 (type: decimal(38,2)), _col18 (type: decimal(38,12)), 
_col19 (type: decimal(38,12)), _col20 (type: decimal(38,12)), _col21 (type: 
decimal(38,12)), _col22 (type: decimal(38,12)), _col23 (type: decimal(38,12)), 
_col24 (type: decimal(38,12)), _col25 (type: decimal(38,12)), _col26 (type: 
decimal(38,12)), _col27 (type: decimal(38,12)), _col28 (type: decimal(38,12)), 
_col29 (type: decimal(38,12)), _col30 (type: decimal(38,2)), _col31 (type: 
decimal(38
 ,2)), _col32 (type: decimal(38,2)), _col33 (type: decimal(38,2)), _col34 
(type: decimal(38,2)), _col35 (type: decimal(38,2)), _col36 (type: 
decimal(38,2)), _col37 (type: decimal(38,2)), _col38 (type: decimal(38,2)), 
_col39 (type: decimal(38,2)), _col40 (type: decimal(38,2)), _col41 (type: 
decimal(38,2))
+                    outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9, _col10, _col11, _col12, _col13, _col14, 
_col15, _col16, _col17, _col18, _col19, _col20, _col21, _col22, _col23, _col24, 
_col25, _col26, _col27, _col28, _col29, _col30, _col31, _col32, _col33, _col34, 
_col35, _col36, _col37, _col38, _col39, _col40, _col41, _col42, _col43
+                    Statistics: Num rows: 100 Data size: 13500 Basic stats: 
COMPLETE Column stats: NONE
+                    File Output Operator
+                      compressed: false
+                      Statistics: Num rows: 100 Data size: 13500 Basic stats: 
COMPLETE Column stats: NONE
+                      table:
+                          input format: 
org.apache.hadoop.mapred.SequenceFileInputFormat
+                          output format: 
org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
+                          serde: 
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
+
+  Stage: Stage-0
+    Fetch Operator
+      limit: -1
+      Processor Tree:
+        ListSink
+

http://git-wip-us.apache.org/repos/asf/hive/blob/bd371246/ql/src/test/results/clientpositive/perf/spark/query67.q.out
----------------------------------------------------------------------
diff --git a/ql/src/test/results/clientpositive/perf/spark/query67.q.out 
b/ql/src/test/results/clientpositive/perf/spark/query67.q.out
new file mode 100644
index 0000000..9affd8f
--- /dev/null
+++ b/ql/src/test/results/clientpositive/perf/spark/query67.q.out
@@ -0,0 +1,315 @@
+PREHOOK: query: explain
+select  *
+from (select i_category
+            ,i_class
+            ,i_brand
+            ,i_product_name
+            ,d_year
+            ,d_qoy
+            ,d_moy
+            ,s_store_id
+            ,sumsales
+            ,rank() over (partition by i_category order by sumsales desc) rk
+      from (select i_category
+                  ,i_class
+                  ,i_brand
+                  ,i_product_name
+                  ,d_year
+                  ,d_qoy
+                  ,d_moy
+                  ,s_store_id
+                  ,sum(coalesce(ss_sales_price*ss_quantity,0)) sumsales
+            from store_sales
+                ,date_dim
+                ,store
+                ,item
+       where  ss_sold_date_sk=d_date_sk
+          and ss_item_sk=i_item_sk
+          and ss_store_sk = s_store_sk
+          and d_month_seq between 1212 and 1212+11
+       group by  rollup(i_category, i_class, i_brand, i_product_name, d_year, 
d_qoy, d_moy,s_store_id))dw1) dw2
+where rk <= 100
+order by i_category
+        ,i_class
+        ,i_brand
+        ,i_product_name
+        ,d_year
+        ,d_qoy
+        ,d_moy
+        ,s_store_id
+        ,sumsales
+        ,rk
+limit 100
+PREHOOK: type: QUERY
+POSTHOOK: query: explain
+select  *
+from (select i_category
+            ,i_class
+            ,i_brand
+            ,i_product_name
+            ,d_year
+            ,d_qoy
+            ,d_moy
+            ,s_store_id
+            ,sumsales
+            ,rank() over (partition by i_category order by sumsales desc) rk
+      from (select i_category
+                  ,i_class
+                  ,i_brand
+                  ,i_product_name
+                  ,d_year
+                  ,d_qoy
+                  ,d_moy
+                  ,s_store_id
+                  ,sum(coalesce(ss_sales_price*ss_quantity,0)) sumsales
+            from store_sales
+                ,date_dim
+                ,store
+                ,item
+       where  ss_sold_date_sk=d_date_sk
+          and ss_item_sk=i_item_sk
+          and ss_store_sk = s_store_sk
+          and d_month_seq between 1212 and 1212+11
+       group by  rollup(i_category, i_class, i_brand, i_product_name, d_year, 
d_qoy, d_moy,s_store_id))dw1) dw2
+where rk <= 100
+order by i_category
+        ,i_class
+        ,i_brand
+        ,i_product_name
+        ,d_year
+        ,d_qoy
+        ,d_moy
+        ,s_store_id
+        ,sumsales
+        ,rk
+limit 100
+POSTHOOK: type: QUERY
+STAGE DEPENDENCIES:
+  Stage-2 is a root stage
+  Stage-1 depends on stages: Stage-2
+  Stage-0 depends on stages: Stage-1
+
+STAGE PLANS:
+  Stage: Stage-2
+    Spark
+#### A masked pattern was here ####
+      Vertices:
+        Map 8 
+            Map Operator Tree:
+                TableScan
+                  alias: store
+                  Statistics: Num rows: 1704 Data size: 3256276 Basic stats: 
COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: s_store_sk is not null (type: boolean)
+                    Statistics: Num rows: 1704 Data size: 3256276 Basic stats: 
COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: s_store_sk (type: int), s_store_id (type: 
string)
+                      outputColumnNames: _col0, _col1
+                      Statistics: Num rows: 1704 Data size: 3256276 Basic 
stats: COMPLETE Column stats: NONE
+                      Spark HashTable Sink Operator
+                        keys:
+                          0 _col2 (type: int)
+                          1 _col0 (type: int)
+            Local Work:
+              Map Reduce Local Work
+
+  Stage: Stage-1
+    Spark
+      Edges:
+        Reducer 2 <- Map 1 (PARTITION-LEVEL SORT, 398), Map 7 (PARTITION-LEVEL 
SORT, 398)
+        Reducer 3 <- Map 9 (PARTITION-LEVEL SORT, 486), Reducer 2 
(PARTITION-LEVEL SORT, 486)
+        Reducer 4 <- Reducer 3 (GROUP, 1009)
+        Reducer 5 <- Reducer 4 (PARTITION-LEVEL SORT, 1009)
+        Reducer 6 <- Reducer 5 (SORT, 1)
+#### A masked pattern was here ####
+      Vertices:
+        Map 1 
+            Map Operator Tree:
+                TableScan
+                  alias: store_sales
+                  Statistics: Num rows: 575995635 Data size: 50814502088 Basic 
stats: COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: (ss_item_sk is not null and ss_sold_date_sk is 
not null and ss_store_sk is not null) (type: boolean)
+                    Statistics: Num rows: 575995635 Data size: 50814502088 
Basic stats: COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: ss_sold_date_sk (type: int), ss_item_sk 
(type: int), ss_store_sk (type: int), ss_quantity (type: int), ss_sales_price 
(type: decimal(7,2))
+                      outputColumnNames: _col0, _col1, _col2, _col3, _col4
+                      Statistics: Num rows: 575995635 Data size: 50814502088 
Basic stats: COMPLETE Column stats: NONE
+                      Reduce Output Operator
+                        key expressions: _col0 (type: int)
+                        sort order: +
+                        Map-reduce partition columns: _col0 (type: int)
+                        Statistics: Num rows: 575995635 Data size: 50814502088 
Basic stats: COMPLETE Column stats: NONE
+                        value expressions: _col1 (type: int), _col2 (type: 
int), _col3 (type: int), _col4 (type: decimal(7,2))
+        Map 7 
+            Map Operator Tree:
+                TableScan
+                  alias: date_dim
+                  Statistics: Num rows: 73049 Data size: 81741831 Basic stats: 
COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: (d_date_sk is not null and d_month_seq BETWEEN 
1212 AND 1223) (type: boolean)
+                    Statistics: Num rows: 8116 Data size: 9081804 Basic stats: 
COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: d_date_sk (type: int), d_year (type: int), 
d_moy (type: int), d_qoy (type: int)
+                      outputColumnNames: _col0, _col2, _col3, _col4
+                      Statistics: Num rows: 8116 Data size: 9081804 Basic 
stats: COMPLETE Column stats: NONE
+                      Reduce Output Operator
+                        key expressions: _col0 (type: int)
+                        sort order: +
+                        Map-reduce partition columns: _col0 (type: int)
+                        Statistics: Num rows: 8116 Data size: 9081804 Basic 
stats: COMPLETE Column stats: NONE
+                        value expressions: _col2 (type: int), _col3 (type: 
int), _col4 (type: int)
+        Map 9 
+            Map Operator Tree:
+                TableScan
+                  alias: item
+                  Statistics: Num rows: 462000 Data size: 663560457 Basic 
stats: COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: i_item_sk is not null (type: boolean)
+                    Statistics: Num rows: 462000 Data size: 663560457 Basic 
stats: COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: i_item_sk (type: int), i_brand (type: 
string), i_class (type: string), i_category (type: string), i_product_name 
(type: string)
+                      outputColumnNames: _col0, _col1, _col2, _col3, _col4
+                      Statistics: Num rows: 462000 Data size: 663560457 Basic 
stats: COMPLETE Column stats: NONE
+                      Reduce Output Operator
+                        key expressions: _col0 (type: int)
+                        sort order: +
+                        Map-reduce partition columns: _col0 (type: int)
+                        Statistics: Num rows: 462000 Data size: 663560457 
Basic stats: COMPLETE Column stats: NONE
+                        value expressions: _col1 (type: string), _col2 (type: 
string), _col3 (type: string), _col4 (type: string)
+        Reducer 2 
+            Local Work:
+              Map Reduce Local Work
+            Reduce Operator Tree:
+              Join Operator
+                condition map:
+                     Inner Join 0 to 1
+                keys:
+                  0 _col0 (type: int)
+                  1 _col0 (type: int)
+                outputColumnNames: _col1, _col2, _col3, _col4, _col7, _col8, 
_col9
+                Statistics: Num rows: 633595212 Data size: 55895953508 Basic 
stats: COMPLETE Column stats: NONE
+                Map Join Operator
+                  condition map:
+                       Inner Join 0 to 1
+                  keys:
+                    0 _col2 (type: int)
+                    1 _col0 (type: int)
+                  outputColumnNames: _col1, _col3, _col4, _col7, _col8, _col9, 
_col11
+                  input vertices:
+                    1 Map 8
+                  Statistics: Num rows: 696954748 Data size: 61485550191 Basic 
stats: COMPLETE Column stats: NONE
+                  Reduce Output Operator
+                    key expressions: _col1 (type: int)
+                    sort order: +
+                    Map-reduce partition columns: _col1 (type: int)
+                    Statistics: Num rows: 696954748 Data size: 61485550191 
Basic stats: COMPLETE Column stats: NONE
+                    value expressions: _col3 (type: int), _col4 (type: 
decimal(7,2)), _col7 (type: int), _col8 (type: int), _col9 (type: int), _col11 
(type: string)
+        Reducer 3 
+            Reduce Operator Tree:
+              Join Operator
+                condition map:
+                     Inner Join 0 to 1
+                keys:
+                  0 _col1 (type: int)
+                  1 _col0 (type: int)
+                outputColumnNames: _col3, _col4, _col7, _col8, _col9, _col11, 
_col13, _col14, _col15, _col16
+                Statistics: Num rows: 766650239 Data size: 67634106676 Basic 
stats: COMPLETE Column stats: NONE
+                Select Operator
+                  expressions: _col15 (type: string), _col14 (type: string), 
_col13 (type: string), _col16 (type: string), _col7 (type: int), _col9 (type: 
int), _col8 (type: int), _col11 (type: string), COALESCE((_col4 * CAST( _col3 
AS decimal(10,0))),0) (type: decimal(18,2))
+                  outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8
+                  Statistics: Num rows: 766650239 Data size: 67634106676 Basic 
stats: COMPLETE Column stats: NONE
+                  Group By Operator
+                    aggregations: sum(_col8)
+                    keys: _col0 (type: string), _col1 (type: string), _col2 
(type: string), _col3 (type: string), _col4 (type: int), _col5 (type: int), 
_col6 (type: int), _col7 (type: string), 0 (type: int)
+                    mode: hash
+                    outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9
+                    Statistics: Num rows: 6899852151 Data size: 608706960084 
Basic stats: COMPLETE Column stats: NONE
+                    Reduce Output Operator
+                      key expressions: _col0 (type: string), _col1 (type: 
string), _col2 (type: string), _col3 (type: string), _col4 (type: int), _col5 
(type: int), _col6 (type: int), _col7 (type: string), _col8 (type: int)
+                      sort order: +++++++++
+                      Map-reduce partition columns: _col0 (type: string), 
_col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: 
int), _col5 (type: int), _col6 (type: int), _col7 (type: string), _col8 (type: 
int)
+                      Statistics: Num rows: 6899852151 Data size: 608706960084 
Basic stats: COMPLETE Column stats: NONE
+                      value expressions: _col9 (type: decimal(28,2))
+        Reducer 4 
+            Reduce Operator Tree:
+              Group By Operator
+                aggregations: sum(VALUE._col0)
+                keys: KEY._col0 (type: string), KEY._col1 (type: string), 
KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: int), 
KEY._col5 (type: int), KEY._col6 (type: int), KEY._col7 (type: string), 
KEY._col8 (type: int)
+                mode: mergepartial
+                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col9
+                Statistics: Num rows: 3449926075 Data size: 304353479997 Basic 
stats: COMPLETE Column stats: NONE
+                pruneGroupingSetId: true
+                Select Operator
+                  expressions: _col0 (type: string), _col1 (type: string), 
_col2 (type: string), _col3 (type: string), _col4 (type: int), _col5 (type: 
int), _col6 (type: int), _col7 (type: string), _col9 (type: decimal(28,2))
+                  outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col16
+                  Statistics: Num rows: 3449926075 Data size: 304353479997 
Basic stats: COMPLETE Column stats: NONE
+                  Reduce Output Operator
+                    key expressions: _col0 (type: string), _col16 (type: 
decimal(28,2))
+                    sort order: +-
+                    Map-reduce partition columns: _col0 (type: string)
+                    Statistics: Num rows: 3449926075 Data size: 304353479997 
Basic stats: COMPLETE Column stats: NONE
+                    TopN Hash Memory Usage: 0.1
+                    value expressions: _col1 (type: string), _col2 (type: 
string), _col3 (type: string), _col4 (type: int), _col5 (type: int), _col6 
(type: int), _col7 (type: string)
+        Reducer 5 
+            Reduce Operator Tree:
+              Select Operator
+                expressions: KEY.reducesinkkey0 (type: string), VALUE._col0 
(type: string), VALUE._col1 (type: string), VALUE._col2 (type: string), 
VALUE._col3 (type: int), VALUE._col4 (type: int), VALUE._col5 (type: int), 
VALUE._col6 (type: string), KEY.reducesinkkey1 (type: decimal(28,2))
+                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col16
+                Statistics: Num rows: 3449926075 Data size: 304353479997 Basic 
stats: COMPLETE Column stats: NONE
+                PTF Operator
+                  Function definitions:
+                      Input definition
+                        input alias: ptf_0
+                        output shape: _col0: string, _col1: string, _col2: 
string, _col3: string, _col4: int, _col5: int, _col6: int, _col7: string, 
_col16: decimal(28,2)
+                        type: WINDOWING
+                      Windowing table definition
+                        input alias: ptf_1
+                        name: windowingtablefunction
+                        order by: _col16 DESC NULLS LAST
+                        partition by: _col0
+                        raw input shape:
+                        window functions:
+                            window function definition
+                              alias: rank_window_0
+                              arguments: _col16
+                              name: rank
+                              window function: GenericUDAFRankEvaluator
+                              window frame: ROWS PRECEDING(MAX)~FOLLOWING(MAX)
+                              isPivotResult: true
+                  Statistics: Num rows: 3449926075 Data size: 304353479997 
Basic stats: COMPLETE Column stats: NONE
+                  Filter Operator
+                    predicate: (rank_window_0 <= 100) (type: boolean)
+                    Statistics: Num rows: 1149975358 Data size: 101451159969 
Basic stats: COMPLETE Column stats: NONE
+                    Select Operator
+                      expressions: _col0 (type: string), _col1 (type: string), 
_col2 (type: string), _col3 (type: string), _col4 (type: int), _col5 (type: 
int), _col6 (type: int), _col7 (type: string), _col16 (type: decimal(28,2)), 
rank_window_0 (type: int)
+                      outputColumnNames: _col0, _col1, _col2, _col3, _col4, 
_col5, _col6, _col7, _col8, _col9
+                      Statistics: Num rows: 1149975358 Data size: 101451159969 
Basic stats: COMPLETE Column stats: NONE
+                      Reduce Output Operator
+                        key expressions: _col0 (type: string), _col1 (type: 
string), _col2 (type: string), _col3 (type: string), _col4 (type: int), _col5 
(type: int), _col6 (type: int), _col7 (type: string), _col8 (type: 
decimal(28,2)), _col9 (type: int)
+                        sort order: ++++++++++
+                        Statistics: Num rows: 1149975358 Data size: 
101451159969 Basic stats: COMPLETE Column stats: NONE
+                        TopN Hash Memory Usage: 0.1
+        Reducer 6 
+            Reduce Operator Tree:
+              Select Operator
+                expressions: KEY.reducesinkkey0 (type: string), 
KEY.reducesinkkey1 (type: string), KEY.reducesinkkey2 (type: string), 
KEY.reducesinkkey3 (type: string), KEY.reducesinkkey4 (type: int), 
KEY.reducesinkkey5 (type: int), KEY.reducesinkkey6 (type: int), 
KEY.reducesinkkey7 (type: string), KEY.reducesinkkey8 (type: decimal(28,2)), 
KEY.reducesinkkey9 (type: int)
+                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, 
_col6, _col7, _col8, _col9
+                Statistics: Num rows: 1149975358 Data size: 101451159969 Basic 
stats: COMPLETE Column stats: NONE
+                Limit
+                  Number of rows: 100
+                  Statistics: Num rows: 100 Data size: 8800 Basic stats: 
COMPLETE Column stats: NONE
+                  File Output Operator
+                    compressed: false
+                    Statistics: Num rows: 100 Data size: 8800 Basic stats: 
COMPLETE Column stats: NONE
+                    table:
+                        input format: 
org.apache.hadoop.mapred.SequenceFileInputFormat
+                        output format: 
org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
+                        serde: 
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
+
+  Stage: Stage-0
+    Fetch Operator
+      limit: 100
+      Processor Tree:
+        ListSink
+

Reply via email to