This is an automated email from the ASF dual-hosted git repository.

github-bot pushed a commit to branch asf-site
in repository https://gitbox.apache.org/repos/asf/incubator-hugegraph-doc.git


The following commit(s) were added to refs/heads/asf-site by this push:
     new 2f42710d Update hugegraph-api-0.5.6-Cassandra.md (#229)
2f42710d is described below

commit 2f42710d1e23ca02cab321a65b9237256cd8556c
Author: imbajin <[email protected]>
AuthorDate: Wed May 17 04:31:14 2023 +0000

    Update hugegraph-api-0.5.6-Cassandra.md (#229)
    
    Completed translation to English. 44d32009138afbf13d7eef1b29dcd2228ceb43a3
---
 docs/_print/index.html                             |   2 +-
 docs/index.xml                                     | 122 ++++++++++-----------
 docs/performance/_print/index.html                 |   2 +-
 docs/performance/api-preformance/_print/index.html |   2 +-
 .../hugegraph-api-0.5.6-cassandra/index.html       |  29 ++---
 docs/performance/api-preformance/index.xml         | 122 ++++++++++-----------
 en/sitemap.xml                                     |   2 +-
 sitemap.xml                                        |   2 +-
 8 files changed, 137 insertions(+), 146 deletions(-)

diff --git a/docs/_print/index.html b/docs/_print/index.html
index d1ad9954..24d00837 100644
--- a/docs/_print/index.html
+++ b/docs/_print/index.html
@@ -6583,7 +6583,7 @@ Merging mode as needed, and when the Restore is 
completed, restore the graph mod
 </span></span><span style=display:flex><span>
 </span></span><span style=display:flex><span><span 
style=color:#8f5902;font-style:italic>// what is the name of the brother and 
the name of the place?
 </span></span></span><span style=display:flex><span><span 
style=color:#8f5902;font-style:italic></span><span 
style=color:#000>g</span><span 
style=color:#ce5c00;font-weight:700>.</span><span 
style=color:#c4a000>V</span><span 
style=color:#ce5c00;font-weight:700>(</span><span 
style=color:#000>pluto</span><span 
style=color:#ce5c00;font-weight:700>).</span><span 
style=color:#c4a000>out</span><span 
style=color:#ce5c00;font-weight:700>(</span><span 
style=color:#4e9a06>&#39;brother&#39;</span><s [...]
-</span></span></code></pre></div><p>推荐使用<a 
href=/docs/quickstart/hugegraph-studio>HugeGraph-Studio</a> 
通过可视化的方式来执行上述代码。另外也可以通过HugeGraph-Client、HugeApi、GremlinConsole和GremlinDriver等多种方式执行上述代码。</p><h4
 id=32-总结>3.2 总结</h4><p>HugeGraph 目前支持 <code>Gremlin</code> 的语法,用户可以通过 
<code>Gremlin / REST-API</code> 实现各种查询需求。</p></div><div class=td-content 
style=page-break-before:always><h1 id=pg-f0a22a813c843322c0d360d952e434ce>8 - 
PERFORMANCE</h1></div><div class=td-content><h1 id=pg-63f6d63db3ee3a5270 [...]
+</span></span></code></pre></div><p>推荐使用<a 
href=/docs/quickstart/hugegraph-studio>HugeGraph-Studio</a> 
通过可视化的方式来执行上述代码。另外也可以通过HugeGraph-Client、HugeApi、GremlinConsole和GremlinDriver等多种方式执行上述代码。</p><h4
 id=32-总结>3.2 总结</h4><p>HugeGraph 目前支持 <code>Gremlin</code> 的语法,用户可以通过 
<code>Gremlin / REST-API</code> 实现各种查询需求。</p></div><div class=td-content 
style=page-break-before:always><h1 id=pg-f0a22a813c843322c0d360d952e434ce>8 - 
PERFORMANCE</h1></div><div class=td-content><h1 id=pg-63f6d63db3ee3a5270 [...]
 </span></span><span style=display:flex><span>  
batch_size_fail_threshold_in_kb: 1000
 </span></span></code></pre></div><ul><li>HugeGraphServer 与 HugeGremlinServer 
与cassandra都在同一机器上启动,server 相关的配置文件除主机和端口有修改外,其余均保持默认。</li></ul><h4 
id=13-名词解释>1.3 名词解释</h4><ul><li>Samples &ndash; 本次场景中一共完成了多少个线程</li><li>Average 
&ndash; 平均响应时间</li><li>Median &ndash; 统计意义上面的响应时间的中值</li><li>90% Line &ndash; 
所有线程中90%的线程的响应时间都小于xx</li><li>Min &ndash; 最小响应时间</li><li>Max &ndash; 
最大响应时间</li><li>Error &ndash; 出错率</li><li>Troughput &ndash; 吞吐量Â</li><li>KB/sec 
&ndash; 以流量做衡量的吞吐量</li></ul><p><em>注:时间的单位 [...]
 </span></span><span style=display:flex><span>git clone 
https://github.com/<span style=color:#4e9a06>${</span><span 
style=color:#000>GITHUB_USER_NAME</span><span 
style=color:#4e9a06>}</span>/hugegraph
diff --git a/docs/index.xml b/docs/index.xml
index ffb57360..61974c0c 100644
--- a/docs/index.xml
+++ b/docs/index.xml
@@ -6131,8 +6131,8 @@ And there is no need to guarantee the order between the 
two parameters.&lt;/p>
 &lt;p>Receive a goodbye email. After completing the above steps, you will 
receive a goodbye email with the subject GOODBYE from &lt;a 
href="mailto:[email protected]";>[email protected]&lt;/a>, and 
you have successfully unsubscribed to the Apache HugeGraph mailing list, and 
you will not receive emails from &lt;a 
href="mailto:[email protected]";>[email protected]&lt;/a>.&lt;/p>
 &lt;/li>
 &lt;/ol></description></item><item><title>Docs: v0.5.6 
Cluster(Cassandra)</title><link>/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/</link><pubDate>Mon,
 01 Jan 0001 00:00:00 
+0000</pubDate><guid>/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/</guid><description>
-&lt;h3 id="1-测试环境">1 测试环境&lt;/h3>
-&lt;p>被压机器信息&lt;/p>
+&lt;h3 id="1-test-environment">1 Test environment&lt;/h3>
+&lt;p>Compressed machine information&lt;/p>
 &lt;table>
 &lt;thead>
 &lt;tr>
@@ -6152,103 +6152,103 @@ And there is no need to guarantee the order between 
the two parameters.&lt;/p>
 &lt;/tbody>
 &lt;/table>
 &lt;ul>
-&lt;li>起压力机器信息:与被压机器同配置&lt;/li>
-&lt;li>测试工具:apache-Jmeter-2.5.1&lt;/li>
+&lt;li>Starting Pressure Machine Information: Configured the same as the 
compressed machine.&lt;/li>
+&lt;li>Testing tool: Apache JMeter 2.5.1.&lt;/li>
 &lt;/ul>
-&lt;p>注:起压机器和被压机器在同一机房&lt;/p>
-&lt;h3 id="2-测试说明">2 测试说明&lt;/h3>
-&lt;h4 id="21-名词定义时间的单位均为ms">2.1 名词定义(时间的单位均为ms)&lt;/h4>
+&lt;p>Note: The machine used to initiate the load and the machine being tested 
are located in the same data center (or server room)&lt;/p>
+&lt;h3 id="2-test-description">2 Test Description&lt;/h3>
+&lt;h4 id="21-definition-of-terms-the-unit-of-time-is-ms">2.1 Definition of 
terms (the unit of time is ms)&lt;/h4>
 &lt;ul>
-&lt;li>Samples &amp;ndash; 本次场景中一共完成了多少个线程&lt;/li>
-&lt;li>Average &amp;ndash; 平均响应时间&lt;/li>
-&lt;li>Median &amp;ndash; 统计意义上面的响应时间的中值&lt;/li>
-&lt;li>90% Line &amp;ndash; 所有线程中90%的线程的响应时间都小于xx&lt;/li>
-&lt;li>Min &amp;ndash; 最小响应时间&lt;/li>
-&lt;li>Max &amp;ndash; 最大响应时间&lt;/li>
-&lt;li>Error &amp;ndash; 出错率&lt;/li>
-&lt;li>Throughput &amp;ndash; 吞吐量&lt;/li>
-&lt;li>KB/sec &amp;ndash; 以流量做衡量的吞吐量&lt;/li>
+&lt;li>Samples &amp;ndash; The total number of threads completed in this 
scenario.&lt;/li>
+&lt;li>Average &amp;ndash; The average response time.&lt;/li>
+&lt;li>Median &amp;ndash; The median response time in statistical 
terms.&lt;/li>
+&lt;li>90% Line &amp;ndash; The response time below which 90% of all threads 
fall.&lt;/li>
+&lt;li>Min &amp;ndash; The minimum response time.&lt;/li>
+&lt;li>Max &amp;ndash; The maximum response time.&lt;/li>
+&lt;li>Error &amp;ndash; The error rate.&lt;/li>
+&lt;li>Throughput &amp;ndash; The number of transactions processed per unit of 
time.&lt;/li>
+&lt;li>KB/sec &amp;ndash; The throughput measured in terms of data transmitted 
per second.&lt;/li>
 &lt;/ul>
-&lt;h4 id="22-底层存储">2.2 底层存储&lt;/h4>
-&lt;p>后端存储使用15节点Cassandra集群,HugeGraph与Cassandra集群位于不同的服务器,server相关的配置文件除主机和端口有修改外,其余均保持默认。&lt;/p>
-&lt;h3 id="3-性能结果总结">3 性能结果总结&lt;/h3>
+&lt;h4 id="22-low-level-storage">2.2 Low-Level Storage&lt;/h4>
+&lt;p>A 15-node Cassandra cluster is used for backend storage. HugeGraph and 
the Cassandra cluster are located on separate servers. Server-related 
configuration files are modified only for host and port settings, while the 
rest remain default.&lt;/p>
+&lt;h3 id="3-summary-of-performance-results">3 Summary of Performance 
Results&lt;/h3>
 &lt;ol>
-&lt;li>HugeGraph单条插入顶点和边的速度分别为9000和4500&lt;/li>
-&lt;li>顶点和边的批量插入速度分别为5w/s和15w/s,远大于单条插入速度&lt;/li>
-&lt;li>按id查询顶点和边的并发度可达到12000以上,且请求的平均延时小于70ms&lt;/li>
+&lt;li>The speed of single vertex and edge insertion in HugeGraph is 9000 and 
4500 per second, respectively.&lt;/li>
+&lt;li>The speed of bulk vertex and edge insertion is 50,000 and 150,000 per 
second, respectively, which is much higher than the single insertion 
speed.&lt;/li>
+&lt;li>The concurrency for querying vertices and edges by ID can reach more 
than 12,000, and the average request delay is less than 70ms.&lt;/li>
 &lt;/ol>
-&lt;h3 id="4-测试结果及分析">4 测试结果及分析&lt;/h3>
-&lt;h4 id="41-batch插入">4.1 batch插入&lt;/h4>
-&lt;h5 id="411-压力上限测试">4.1.1 压力上限测试&lt;/h5>
-&lt;h6 id="测试方法">测试方法&lt;/h6>
-&lt;p>不断提升并发量,测试server仍能正常提供服务的压力上限&lt;/p>
-&lt;h6 id="压力参数">压力参数&lt;/h6>
-&lt;p>持续时间:5min&lt;/p>
-&lt;h6 id="顶点的最大插入速度">顶点的最大插入速度:&lt;/h6>
+&lt;h3 id="4-test-results-and-analysis">4 Test Results and Analysis&lt;/h3>
+&lt;h4 id="41-batch-insertion">4.1 Batch Insertion&lt;/h4>
+&lt;h5 id="411-pressure-upper-limit-test">4.1.1 Pressure Upper Limit 
Test&lt;/h5>
+&lt;h6 id="test-method">Test Method&lt;/h6>
+&lt;p>Continuously increase the concurrency level to test the upper limit of 
the server&amp;rsquo;s ability to provide services.&lt;/p>
+&lt;h6 id="pressure-parameters">Pressure Parameters&lt;/h6>
+&lt;p>Duration: 5 minutes.&lt;/p>
+&lt;h6 id="maximum-insertion-speed-of-vertices">Maximum Insertion Speed of 
Vertices:&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/vertex_batch.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发3500,顶点的吞吐量是261,每秒可处理的数据:261*200=52200/s&lt;/li>
+&lt;li>At a concurrency level of 3500, the throughput of vertices is 261, and 
the amount of data processed per second is 52,200 (261 * 200).&lt;/li>
 &lt;/ul>
-&lt;h6 id="边的最大插入速度">边的最大插入速度&lt;/h6>
+&lt;h6 id="maximum-insertion-speed-of-edges">Maximum Insertion Speed of 
Edges:&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/edge_batch.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion-1">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发1000,边的吞吐量是323,每秒可处理的数据:323*500=161500/s&lt;/li>
+&lt;li>At a concurrency level of 1000, the throughput of edges is 323, and the 
amount of data processed per second is 161,500 (323 * 500).&lt;/li>
 &lt;/ul>
-&lt;h4 id="42-single插入">4.2 single插入&lt;/h4>
-&lt;h5 id="421-压力上限测试">4.2.1 压力上限测试&lt;/h5>
-&lt;h6 id="测试方法-1">测试方法&lt;/h6>
-&lt;p>不断提升并发量,测试server仍能正常提供服务的压力上限&lt;/p>
-&lt;h6 id="压力参数-1">压力参数&lt;/h6>
+&lt;h4 id="42-single-insertion">4.2 Single Insertion&lt;/h4>
+&lt;h5 id="421-pressure-upper-limit-test">4.2.1 Pressure Upper Limit 
Test&lt;/h5>
+&lt;h6 id="test-method-1">Test Method&lt;/h6>
+&lt;p>Continuously increase the concurrency level to test the upper limit of 
the server&amp;rsquo;s ability to provide services.&lt;/p>
+&lt;h6 id="pressure-parameters-1">Pressure Parameters&lt;/h6>
 &lt;ul>
-&lt;li>持续时间:5min&lt;/li>
-&lt;li>服务异常标志:错误率大于0.00%&lt;/li>
+&lt;li>Duration: 5 minutes.&lt;/li>
+&lt;li>Service exception mark: Error rate greater than 0.00%.&lt;/li>
 &lt;/ul>
-&lt;h6 id="顶点的单条插入">顶点的单条插入&lt;/h6>
+&lt;h6 id="single-insertion-of-vertices">Single Insertion of Vertices:&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/vertex_single.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion-2">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发9000,吞吐量为8400,顶点的单条插入并发能力为9000&lt;/li>
+&lt;li>At a concurrency level of 9000, the throughput is 8400, and the 
single-insertion concurrency capability for vertices is 9000.&lt;/li>
 &lt;/ul>
-&lt;h6 id="边的单条插入">边的单条插入&lt;/h6>
+&lt;h6 id="single-insertion-of-edges">Single Insertion of Edges:&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/edge_single.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion-3">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发4500,吞吐量是4160,边的单条插入并发能力为4500&lt;/li>
+&lt;li>At a concurrency level of 4500, the throughput is 4160, and the 
single-insertion concurrency capability for edges is 4500.&lt;/li>
 &lt;/ul>
-&lt;h4 id="43-按id查询">4.3 按id查询&lt;/h4>
-&lt;h5 id="431-压力上限测试">4.3.1 压力上限测试&lt;/h5>
-&lt;h6 id="测试方法-2">测试方法&lt;/h6>
-&lt;p>不断提升并发量,测试server仍能正常提供服务的压力上限&lt;/p>
-&lt;h6 id="压力参数-2">压力参数&lt;/h6>
+&lt;h4 id="43-query-by-id">4.3 Query by ID&lt;/h4>
+&lt;h5 id="431-pressure-upper-limit-test">4.3.1 Pressure Upper Limit 
Test&lt;/h5>
+&lt;h6 id="test-method-2">Test Method&lt;/h6>
+&lt;p>Continuously increase the concurrency and test the upper limit of the 
pressure that the server can still provide services normally.&lt;/p>
+&lt;h6 id="pressure-parameters-2">Pressure Parameters&lt;/h6>
 &lt;ul>
-&lt;li>持续时间:5min&lt;/li>
-&lt;li>服务异常标志:错误率大于0.00%&lt;/li>
+&lt;li>Duration: 5 minutes&lt;/li>
+&lt;li>Service exception flag: error rate greater than 0.00%&lt;/li>
 &lt;/ul>
-&lt;h6 id="顶点的按id查询">顶点的按id查询&lt;/h6>
+&lt;h6 id="query-by-id-for-vertices">Query by ID for vertices&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/vertex_id_query.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion-4">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发14500,吞吐量是13576,顶点的按id查询的并发能力为14500,平均延时为11ms&lt;/li>
+&lt;li>The concurrent capacity of the vertex search by ID is 14500, with a 
throughput of 13576 and an average delay of 11ms.&lt;/li>
 &lt;/ul>
-&lt;h6 id="边的按id查询">边的按id查询&lt;/h6>
+&lt;h6 id="edge-search-by-id">Edge search by ID&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/edge_id_query.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion-5">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发12000,吞吐量是10688,边的按id查询的并发能力为12000,平均延时为63ms&lt;/li>
+&lt;li>For edge ID-based queries, the server&amp;rsquo;s concurrent capacity 
is up to 12,000, with a throughput of 10,688 and an average latency of 
63ms.&lt;/li>
 &lt;/ul></description></item><item><title>Docs: HugeGraph 
内置用户权限与扩展权限配置及使用</title><link>/docs/config/config-authentication/</link><pubDate>Mon,
 01 Jan 0001 00:00:00 
+0000</pubDate><guid>/docs/config/config-authentication/</guid><description>
 &lt;h3 id="概述">概述&lt;/h3>
 &lt;p>HugeGraph 为了方便不同用户场景下的鉴权使用,目前内置了两套权限模式:&lt;/p>
diff --git a/docs/performance/_print/index.html 
b/docs/performance/_print/index.html
index 53c3348d..a494b216 100644
--- a/docs/performance/_print/index.html
+++ b/docs/performance/_print/index.html
@@ -1,6 +1,6 @@
 <!doctype html><html lang=en class=no-js><head><meta charset=utf-8><meta 
name=viewport 
content="width=device-width,initial-scale=1,shrink-to-fit=no"><meta 
name=generator content="Hugo 0.102.3"><link rel=canonical type=text/html 
href=/docs/performance/><link rel=alternate type=application/rss+xml 
href=/docs/performance/index.xml><meta name=robots content="noindex, 
nofollow"><link rel="shortcut icon" href=/favicons/favicon.ico><link 
rel=apple-touch-icon href=/favicons/apple-touch-icon-180x [...]
 <link rel=stylesheet href=/css/prism.css><script 
type=application/javascript>var 
doNotTrack=!1;doNotTrack||(window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)},ga.l=+new
 
Date,ga("create","UA-00000000-0","auto"),ga("send","pageview"))</script><script 
async src=https://www.google-analytics.com/analytics.js></script></head><body 
class=td-section><header><nav class="js-navbar-scroll navbar navbar-expand 
navbar-dark flex-column flex-md-row td-navbar"><a class=navbar-brand href=/> 
[...]
-<a href=# onclick="return print(),!1">Click here to print</a>.</p><p><a 
href=/docs/performance/>Return to the regular view of this 
page</a>.</p></div><h1 class=title>PERFORMANCE</h1><ul><li>1: <a 
href=#pg-63f6d63db3ee3a5270fc1ca0a0c0e181>HugeGraph BenchMark 
Performance</a></li><li>2: <a 
href=#pg-699ebe5daed825049424b7539aad30f9>HugeGraph-API 
Performance</a></li><ul><li>2.1: <a 
href=#pg-dbfafc29a5e930415f78f72c47ee67f2>v0.5.6 
Stand-alone(RocksDB)</a></li><li>2.2: <a href=#pg-fd5b165e28a07 [...]
+<a href=# onclick="return print(),!1">Click here to print</a>.</p><p><a 
href=/docs/performance/>Return to the regular view of this 
page</a>.</p></div><h1 class=title>PERFORMANCE</h1><ul><li>1: <a 
href=#pg-63f6d63db3ee3a5270fc1ca0a0c0e181>HugeGraph BenchMark 
Performance</a></li><li>2: <a 
href=#pg-699ebe5daed825049424b7539aad30f9>HugeGraph-API 
Performance</a></li><ul><li>2.1: <a 
href=#pg-dbfafc29a5e930415f78f72c47ee67f2>v0.5.6 
Stand-alone(RocksDB)</a></li><li>2.2: <a href=#pg-fd5b165e28a07 [...]
 </span></span><span style=display:flex><span>  
batch_size_fail_threshold_in_kb: 1000
 </span></span></code></pre></div><ul><li>HugeGraphServer 与 HugeGremlinServer 
与cassandra都在同一机器上启动,server 相关的配置文件除主机和端口有修改外,其余均保持默认。</li></ul><h4 
id=13-名词解释>1.3 名词解释</h4><ul><li>Samples &ndash; 本次场景中一共完成了多少个线程</li><li>Average 
&ndash; 平均响应时间</li><li>Median &ndash; 统计意义上面的响应时间的中值</li><li>90% Line &ndash; 
所有线程中90%的线程的响应时间都小于xx</li><li>Min &ndash; 最小响应时间</li><li>Max &ndash; 
最大响应时间</li><li>Error &ndash; 出错率</li><li>Troughput &ndash; 吞吐量Â</li><li>KB/sec 
&ndash; 以流量做衡量的吞吐量</li></ul><p><em>注:时间的单位 [...]
 <script 
src=https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.min.js 
integrity="sha512-UR25UO94eTnCVwjbXozyeVd6ZqpaAE9naiEUBK/A+QDbfSTQFhPGj5lOR6d8tsgbBk84Ggb5A3EkjsOgPRPcKA=="
 crossorigin=anonymous></script>
diff --git a/docs/performance/api-preformance/_print/index.html 
b/docs/performance/api-preformance/_print/index.html
index b0af02b0..e3f7cd9e 100644
--- a/docs/performance/api-preformance/_print/index.html
+++ b/docs/performance/api-preformance/_print/index.html
@@ -2,7 +2,7 @@
 
 Single …"><meta property="og:title" content="HugeGraph-API Performance"><meta 
property="og:description" content="Apache HugeGraph site"><meta 
property="og:type" content="website"><meta property="og:url" 
content="/docs/performance/api-preformance/"><meta property="og:site_name" 
content="HugeGraph"><meta itemprop=name content="HugeGraph-API 
Performance"><meta itemprop=description content="Apache HugeGraph site"><meta 
name=twitter:card content="summary"><meta name=twitter:title content="Hug [...]
 <link rel=stylesheet href=/css/prism.css><script 
type=application/javascript>var 
doNotTrack=!1;doNotTrack||(window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)},ga.l=+new
 
Date,ga("create","UA-00000000-0","auto"),ga("send","pageview"))</script><script 
async src=https://www.google-analytics.com/analytics.js></script></head><body 
class=td-section><header><nav class="js-navbar-scroll navbar navbar-expand 
navbar-dark flex-column flex-md-row td-navbar"><a class=navbar-brand href=/> 
[...]
-<a href=# onclick="return print(),!1">Click here to print</a>.</p><p><a 
href=/docs/performance/api-preformance/>Return to the regular view of this 
page</a>.</p></div><h1 class=title>HugeGraph-API Performance</h1><ul><li>1: <a 
href=#pg-dbfafc29a5e930415f78f72c47ee67f2>v0.5.6 
Stand-alone(RocksDB)</a></li><li>2: <a 
href=#pg-fd5b165e28a07f1c35ab177b10e15dc8>v0.5.6 
Cluster(Cassandra)</a></li><li>3: <a 
href=#pg-0005aca20e30ef2795411939ccbf0fd9>v0.4.4</a></li><li>4: <a 
href=#pg-d4233a3feb070643 [...]
+<a href=# onclick="return print(),!1">Click here to print</a>.</p><p><a 
href=/docs/performance/api-preformance/>Return to the regular view of this 
page</a>.</p></div><h1 class=title>HugeGraph-API Performance</h1><ul><li>1: <a 
href=#pg-dbfafc29a5e930415f78f72c47ee67f2>v0.5.6 
Stand-alone(RocksDB)</a></li><li>2: <a 
href=#pg-fd5b165e28a07f1c35ab177b10e15dc8>v0.5.6 
Cluster(Cassandra)</a></li><li>3: <a 
href=#pg-0005aca20e30ef2795411939ccbf0fd9>v0.4.4</a></li><li>4: <a 
href=#pg-d4233a3feb070643 [...]
 </span></span><span style=display:flex><span>  
batch_size_fail_threshold_in_kb: 1000
 </span></span></code></pre></div><ul><li>HugeGraphServer 与 HugeGremlinServer 
与cassandra都在同一机器上启动,server 相关的配置文件除主机和端口有修改外,其余均保持默认。</li></ul><h4 
id=13-名词解释>1.3 名词解释</h4><ul><li>Samples &ndash; 本次场景中一共完成了多少个线程</li><li>Average 
&ndash; 平均响应时间</li><li>Median &ndash; 统计意义上面的响应时间的中值</li><li>90% Line &ndash; 
所有线程中90%的线程的响应时间都小于xx</li><li>Min &ndash; 最小响应时间</li><li>Max &ndash; 
最大响应时间</li><li>Error &ndash; 出错率</li><li>Troughput &ndash; 吞吐量Â</li><li>KB/sec 
&ndash; 以流量做衡量的吞吐量</li></ul><p><em>注:时间的单位 [...]
 <script 
src=https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.min.js 
integrity="sha512-UR25UO94eTnCVwjbXozyeVd6ZqpaAE9naiEUBK/A+QDbfSTQFhPGj5lOR6d8tsgbBk84Ggb5A3EkjsOgPRPcKA=="
 crossorigin=anonymous></script>
diff --git 
a/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/index.html 
b/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/index.html
index 4b97c864..3a87d5d7 100644
--- a/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/index.html
+++ b/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/index.html
@@ -1,5 +1,5 @@
-<!doctype html><html lang=en class=no-js><head><meta charset=utf-8><meta 
name=viewport 
content="width=device-width,initial-scale=1,shrink-to-fit=no"><meta 
name=generator content="Hugo 0.102.3"><meta name=robots content="index, 
follow"><link rel="shortcut icon" href=/favicons/favicon.ico><link 
rel=apple-touch-icon href=/favicons/apple-touch-icon-180x180.png 
sizes=180x180><link rel=icon type=image/png href=/favicons/favicon-16x16.png 
sizes=16x16><link rel=icon type=image/png href=/favicons [...]
-被压机器信息
+<!doctype html><html lang=en class=no-js><head><meta charset=utf-8><meta 
name=viewport 
content="width=device-width,initial-scale=1,shrink-to-fit=no"><meta 
name=generator content="Hugo 0.102.3"><meta name=robots content="index, 
follow"><link rel="shortcut icon" href=/favicons/favicon.ico><link 
rel=apple-touch-icon href=/favicons/apple-touch-icon-180x180.png 
sizes=180x180><link rel=icon type=image/png href=/favicons/favicon-16x16.png 
sizes=16x16><link rel=icon type=image/png href=/favicons [...]
+Compressed machine information
 
 
 
@@ -14,28 +14,19 @@ Memory
 48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
 128G
 10000Mbps
-750GB SSD,2.7T HDD
-
-
-
-
-起压力机器信息:与被压机器同配置
-测试工 …"><meta property="og:title" content="v0.5.6 Cluster(Cassandra)"><meta 
property="og:description" content="1 测试环境 被压机器信息
-CPU Memory 网卡 磁盘 48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz 128G 10000Mbps 
750GB SSD,2.7T HDD 起压力机器信息:与被压机器同配置 测试工具:apache-Jmeter-2.5.1 注:起压机器和被压机器在同一机房
-2 测试说明 2.1 名词定义(时间的单位均为ms) Samples &ndash; 本次场景中一共完成了多少个线程 Average &ndash; 
平均响应时间 Median &ndash; 统计意义上面的响应时间的中值 90% Line &ndash; 所有线程中90%的线程的响应时间都小于xx Min 
&ndash; 最小响应时间 Max &ndash; 最大响应时间 Error &ndash; 出错率 Throughput &ndash; 吞吐量 
KB/sec &ndash; 以流量做衡量的吞吐量 2.2 底层存储 
后端存储使用15节点Cassandra集群,HugeGraph与Cassandra集群位于不同的服务器,server相关的配置文件除主机和端口有修改外,其余均保持默认。
-3 性能结果总结 HugeGraph单条插入顶点和边的速度分别为9000和4500 顶点和边的批量插入速度分别为5w/s和15w/s,远大于单条插入速度 
按id查询顶点和边的并发度可达到12000以上,且请求的平均延时小于70ms 4 测试结果及分析 4.1 batch插入 4.1.1 压力上限测试 测试方法 
不断提升并发量,测试server仍能正常提供服务的压力上限"><meta property="og:type" content="article"><meta 
property="og:url" 
content="/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/"><meta
 property="article:section" content="docs"><meta 
property="article:modified_time" content="2022-04-17T11:36:55+08:00"><meta 
property="og:site_name" content="H [...]
-CPU Memory 网卡 磁盘 48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz 128G 10000Mbps 
750GB SSD,2.7T HDD 起压力机器信息:与被压机器同配置 测试工具:apache-Jmeter-2.5.1 注:起压机器和被压机器在同一机房
-2 测试说明 2.1 名词定义(时间的单位均为ms) Samples &ndash; 本次场景中一共完成了多少个线程 Average &ndash; 
平均响应时间 Median &ndash; 统计意义上面的响应时间的中值 90% Line &ndash; 所有线程中90%的线程的响应时间都小于xx Min 
&ndash; 最小响应时间 Max &ndash; 最大响应时间 Error &ndash; 出错率 Throughput &ndash; 吞吐量 
KB/sec &ndash; 以流量做衡量的吞吐量 2.2 底层存储 
后端存储使用15节点Cassandra集群,HugeGraph与Cassandra集群位于不同的服务器,server相关的配置文件除主机和端口有修改外,其余均保持默认。
-3 性能结果总结 HugeGraph单条插入顶点和边的速度分别为9000和4500 顶点和边的批量插入速度分别为5w/s和15w/s,远大于单条插入速度 
按id查询顶点和边的并发度可达到12000以上,且请求的平均延时小于70ms 4 测试结果及分析 4.1 batch插入 4.1.1 压力上限测试 测试方法 
不断提升并发量,测试server仍能正常提供服务的压力上限"><meta itemprop=dateModified 
content="2022-04-17T11:36:55+08:00"><meta itemprop=wordCount 
content="115"><meta itemprop=keywords content><meta name=twitter:card 
content="summary"><meta name=twitter:title content="v0.5.6 
Cluster(Cassandra)"><meta name=twitter:description content="1 测试环境 被压机器信息
-CPU Memory 网卡 磁盘 48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz 128G 10000Mbps 
750GB SSD,2.7T HDD 起压力机器信息:与被压机器同配置 测试工具:apache-Jmeter-2.5.1 注:起压机器和被压机器在同一机房
-2 测试说明 2.1 名词定义(时间的单位均为ms) Samples &ndash; 本次场景中一共完成了多少个线程 Average &ndash; 
平均响应时间 Median &ndash; 统计意义上面的响应时间的中值 90% Line &ndash; 所有线程中90%的线程的响应时间都小于xx Min 
&ndash; 最小响应时间 Max &ndash; 最大响应时间 Error &ndash; 出错率 Throughput &ndash; 吞吐量 
KB/sec &ndash; 以流量做衡量的吞吐量 2.2 底层存储 
后端存储使用15节点Cassandra集群,HugeGraph与Cassandra集群位于不同的服务器,server相关的配置文件除主机和端口有修改外,其余均保持默认。
-3 性能结果总结 HugeGraph单条插入顶点和边的速度分别为9000和4500 顶点和边的批量插入速度分别为5w/s和15w/s,远大于单条插入速度 
按id查询顶点和边的并发度可达到12000以上,且请求的平均延时小于70ms 4 测试结果及分析 4.1 batch插入 4.1.1 压力上限测试 测试方法 
不断提升并发量,测试server仍能正常提供服务的压力上限"><link rel=preload 
href=/scss/main.min.ad1b0560bef9c54394313a5bc50d3313d4e56ea590ddc5cfb84a077dfc6fec5e.css
 as=style><link 
href=/scss/main.min.ad1b0560bef9c54394313a5bc50d3313d4e56ea590ddc5cfb84a077dfc6fec5e.css
 rel=stylesheet integrity><script 
src=https://code.jquery.com/jquery-3.5.1.min.js integrity="sh [...]
+750GB SSD,2.7T …"><meta property="og:title" content="v0.5.6 
Cluster(Cassandra)"><meta property="og:description" content="1 Test environment 
Compressed machine information
+CPU Memory 网卡 磁盘 48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz 128G 10000Mbps 
750GB SSD,2.7T HDD Starting Pressure Machine Information: Configured the same 
as the compressed machine. Testing tool: Apache JMeter 2.5.1. Note: The machine 
used to initiate the load and the machine being tested are located in the same 
data center (or server room)
+2 Test Description 2.1 Definition of terms (the unit of time is ms) Samples 
&ndash; The total number of threads completed in this scenario."><meta 
property="og:type" content="article"><meta property="og:url" 
content="/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/"><meta
 property="article:section" content="docs"><meta 
property="article:modified_time" content="2023-05-16T23:30:00-05:00"><meta 
property="og:site_name" content="HugeGraph"><meta itemprop=name content="v0.5.6 
 [...]
+CPU Memory 网卡 磁盘 48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz 128G 10000Mbps 
750GB SSD,2.7T HDD Starting Pressure Machine Information: Configured the same 
as the compressed machine. Testing tool: Apache JMeter 2.5.1. Note: The machine 
used to initiate the load and the machine being tested are located in the same 
data center (or server room)
+2 Test Description 2.1 Definition of terms (the unit of time is ms) Samples 
&ndash; The total number of threads completed in this scenario."><meta 
itemprop=dateModified content="2023-05-16T23:30:00-05:00"><meta 
itemprop=wordCount content="548"><meta itemprop=keywords content><meta 
name=twitter:card content="summary"><meta name=twitter:title content="v0.5.6 
Cluster(Cassandra)"><meta name=twitter:description content="1 Test environment 
Compressed machine information
+CPU Memory 网卡 磁盘 48 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz 128G 10000Mbps 
750GB SSD,2.7T HDD Starting Pressure Machine Information: Configured the same 
as the compressed machine. Testing tool: Apache JMeter 2.5.1. Note: The machine 
used to initiate the load and the machine being tested are located in the same 
data center (or server room)
+2 Test Description 2.1 Definition of terms (the unit of time is ms) Samples 
&ndash; The total number of threads completed in this scenario."><link 
rel=preload 
href=/scss/main.min.ad1b0560bef9c54394313a5bc50d3313d4e56ea590ddc5cfb84a077dfc6fec5e.css
 as=style><link 
href=/scss/main.min.ad1b0560bef9c54394313a5bc50d3313d4e56ea590ddc5cfb84a077dfc6fec5e.css
 rel=stylesheet integrity><script 
src=https://code.jquery.com/jquery-3.5.1.min.js 
integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbb [...]
 <link rel=stylesheet href=/css/prism.css><script 
type=application/javascript>var 
doNotTrack=!1;doNotTrack||(window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)},ga.l=+new
 
Date,ga("create","UA-00000000-0","auto"),ga("send","pageview"))</script><script 
async src=https://www.google-analytics.com/analytics.js></script></head><body 
class=td-page><header><nav class="js-navbar-scroll navbar navbar-expand 
navbar-dark flex-column flex-md-row td-navbar"><a class=navbar-brand href=/><sp 
[...]
 <a 
href=https://github.com/apache/incubator-hugegraph-doc/edit/master/content/en/docs/performance/api-preformance/hugegraph-api-0.5.6-Cassandra.md
 class=td-page-meta--edit target=_blank rel=noopener><i class="fa fa-edit 
fa-fw"></i> Edit this page</a>
 <a 
href="https://github.com/apache/incubator-hugegraph-doc/new/master/content/en/docs/performance/api-preformance/hugegraph-api-0.5.6-Cassandra.md?filename=change-me.md&value=---%0Atitle%3A+%22Long+Page+Title%22%0AlinkTitle%3A+%22Short+Nav+Title%22%0Aweight%3A+100%0Adescription%3A+%3E-%0A+++++Page+description+for+heading+and+indexes.%0A---%0A%0A%23%23+Heading%0A%0AEdit+this+template+to+create+your+new+page.%0A%0A%2A+Give+it+a+good+name%2C+ending+in+%60.md%60+-+e.g.+%60getting-started.md%
 [...]
 <a 
href="https://github.com/apache/incubator-hugegraph-doc/issues/new?title=v0.5.6%20Cluster%28Cassandra%29";
 class=td-page-meta--issue target=_blank rel=noopener><i class="fab fa-github 
fa-fw"></i> Create documentation issue</a>
 <a href=https://github.com/apache/incubator-hugegraph/issues/new 
class=td-page-meta--project-issue target=_blank rel=noopener><i class="fas 
fa-tasks fa-fw"></i> Create project issue</a>
-<a id=print href=/docs/performance/api-preformance/_print/><i class="fa 
fa-print fa-fw"></i> Print entire section</a></div><div class=td-toc><nav 
id=TableOfContents><ul><li><ul><li><a href=#1-测试环境>1 测试环境</a></li><li><a 
href=#2-测试说明>2 测试说明</a></li><li><a href=#3-性能结果总结>3 性能结果总结</a></li><li><a 
href=#4-测试结果及分析>4 测试结果及分析</a></li></ul></li></ul></nav></div></aside><main 
class="col-12 col-md-9 col-xl-8 pl-md-5" role=main><nav aria-label=breadcrumb 
class=td-breadcrumbs><ol class=breadcrumb><li  [...]
+<a id=print href=/docs/performance/api-preformance/_print/><i class="fa 
fa-print fa-fw"></i> Print entire section</a></div><div class=td-toc><nav 
id=TableOfContents><ul><li><ul><li><a href=#1-test-environment>1 Test 
environment</a></li><li><a href=#2-test-description>2 Test 
Description</a></li><li><a href=#3-summary-of-performance-results>3 Summary of 
Performance Results</a></li><li><a href=#4-test-results-and-analysis>4 Test 
Results and Analysis</a></li></ul></li></ul></nav></div></asid [...]
 <script 
src=https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.min.js 
integrity="sha512-UR25UO94eTnCVwjbXozyeVd6ZqpaAE9naiEUBK/A+QDbfSTQFhPGj5lOR6d8tsgbBk84Ggb5A3EkjsOgPRPcKA=="
 crossorigin=anonymous></script>
 <script src=/js/tabpane-persist.js></script>
 <script 
src=/js/main.min.aa9f4c5dae6a98b2c46277f4c56f1673a2b000d1756ce4ffae93784cab25e6d5.js
 integrity="sha256-qp9MXa5qmLLEYnf0xW8Wc6KwANF1bOT/rpN4TKsl5tU=" 
crossorigin=anonymous></script>
diff --git a/docs/performance/api-preformance/index.xml 
b/docs/performance/api-preformance/index.xml
index 6529c81e..6cb0623d 100644
--- a/docs/performance/api-preformance/index.xml
+++ b/docs/performance/api-preformance/index.xml
@@ -118,8 +118,8 @@
 &lt;ul>
 &lt;li>Concurrency is 13,000, throughput is 12,225. The concurrency capacity 
for querying edges by ID is 13,000, with an average delay of 12ms.&lt;/li>
 &lt;/ul></description></item><item><title>Docs: v0.5.6 
Cluster(Cassandra)</title><link>/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/</link><pubDate>Mon,
 01 Jan 0001 00:00:00 
+0000</pubDate><guid>/docs/performance/api-preformance/hugegraph-api-0.5.6-cassandra/</guid><description>
-&lt;h3 id="1-测试环境">1 测试环境&lt;/h3>
-&lt;p>被压机器信息&lt;/p>
+&lt;h3 id="1-test-environment">1 Test environment&lt;/h3>
+&lt;p>Compressed machine information&lt;/p>
 &lt;table>
 &lt;thead>
 &lt;tr>
@@ -139,103 +139,103 @@
 &lt;/tbody>
 &lt;/table>
 &lt;ul>
-&lt;li>起压力机器信息:与被压机器同配置&lt;/li>
-&lt;li>测试工具:apache-Jmeter-2.5.1&lt;/li>
+&lt;li>Starting Pressure Machine Information: Configured the same as the 
compressed machine.&lt;/li>
+&lt;li>Testing tool: Apache JMeter 2.5.1.&lt;/li>
 &lt;/ul>
-&lt;p>注:起压机器和被压机器在同一机房&lt;/p>
-&lt;h3 id="2-测试说明">2 测试说明&lt;/h3>
-&lt;h4 id="21-名词定义时间的单位均为ms">2.1 名词定义(时间的单位均为ms)&lt;/h4>
+&lt;p>Note: The machine used to initiate the load and the machine being tested 
are located in the same data center (or server room)&lt;/p>
+&lt;h3 id="2-test-description">2 Test Description&lt;/h3>
+&lt;h4 id="21-definition-of-terms-the-unit-of-time-is-ms">2.1 Definition of 
terms (the unit of time is ms)&lt;/h4>
 &lt;ul>
-&lt;li>Samples &amp;ndash; 本次场景中一共完成了多少个线程&lt;/li>
-&lt;li>Average &amp;ndash; 平均响应时间&lt;/li>
-&lt;li>Median &amp;ndash; 统计意义上面的响应时间的中值&lt;/li>
-&lt;li>90% Line &amp;ndash; 所有线程中90%的线程的响应时间都小于xx&lt;/li>
-&lt;li>Min &amp;ndash; 最小响应时间&lt;/li>
-&lt;li>Max &amp;ndash; 最大响应时间&lt;/li>
-&lt;li>Error &amp;ndash; 出错率&lt;/li>
-&lt;li>Throughput &amp;ndash; 吞吐量&lt;/li>
-&lt;li>KB/sec &amp;ndash; 以流量做衡量的吞吐量&lt;/li>
+&lt;li>Samples &amp;ndash; The total number of threads completed in this 
scenario.&lt;/li>
+&lt;li>Average &amp;ndash; The average response time.&lt;/li>
+&lt;li>Median &amp;ndash; The median response time in statistical 
terms.&lt;/li>
+&lt;li>90% Line &amp;ndash; The response time below which 90% of all threads 
fall.&lt;/li>
+&lt;li>Min &amp;ndash; The minimum response time.&lt;/li>
+&lt;li>Max &amp;ndash; The maximum response time.&lt;/li>
+&lt;li>Error &amp;ndash; The error rate.&lt;/li>
+&lt;li>Throughput &amp;ndash; The number of transactions processed per unit of 
time.&lt;/li>
+&lt;li>KB/sec &amp;ndash; The throughput measured in terms of data transmitted 
per second.&lt;/li>
 &lt;/ul>
-&lt;h4 id="22-底层存储">2.2 底层存储&lt;/h4>
-&lt;p>后端存储使用15节点Cassandra集群,HugeGraph与Cassandra集群位于不同的服务器,server相关的配置文件除主机和端口有修改外,其余均保持默认。&lt;/p>
-&lt;h3 id="3-性能结果总结">3 性能结果总结&lt;/h3>
+&lt;h4 id="22-low-level-storage">2.2 Low-Level Storage&lt;/h4>
+&lt;p>A 15-node Cassandra cluster is used for backend storage. HugeGraph and 
the Cassandra cluster are located on separate servers. Server-related 
configuration files are modified only for host and port settings, while the 
rest remain default.&lt;/p>
+&lt;h3 id="3-summary-of-performance-results">3 Summary of Performance 
Results&lt;/h3>
 &lt;ol>
-&lt;li>HugeGraph单条插入顶点和边的速度分别为9000和4500&lt;/li>
-&lt;li>顶点和边的批量插入速度分别为5w/s和15w/s,远大于单条插入速度&lt;/li>
-&lt;li>按id查询顶点和边的并发度可达到12000以上,且请求的平均延时小于70ms&lt;/li>
+&lt;li>The speed of single vertex and edge insertion in HugeGraph is 9000 and 
4500 per second, respectively.&lt;/li>
+&lt;li>The speed of bulk vertex and edge insertion is 50,000 and 150,000 per 
second, respectively, which is much higher than the single insertion 
speed.&lt;/li>
+&lt;li>The concurrency for querying vertices and edges by ID can reach more 
than 12,000, and the average request delay is less than 70ms.&lt;/li>
 &lt;/ol>
-&lt;h3 id="4-测试结果及分析">4 测试结果及分析&lt;/h3>
-&lt;h4 id="41-batch插入">4.1 batch插入&lt;/h4>
-&lt;h5 id="411-压力上限测试">4.1.1 压力上限测试&lt;/h5>
-&lt;h6 id="测试方法">测试方法&lt;/h6>
-&lt;p>不断提升并发量,测试server仍能正常提供服务的压力上限&lt;/p>
-&lt;h6 id="压力参数">压力参数&lt;/h6>
-&lt;p>持续时间:5min&lt;/p>
-&lt;h6 id="顶点的最大插入速度">顶点的最大插入速度:&lt;/h6>
+&lt;h3 id="4-test-results-and-analysis">4 Test Results and Analysis&lt;/h3>
+&lt;h4 id="41-batch-insertion">4.1 Batch Insertion&lt;/h4>
+&lt;h5 id="411-pressure-upper-limit-test">4.1.1 Pressure Upper Limit 
Test&lt;/h5>
+&lt;h6 id="test-method">Test Method&lt;/h6>
+&lt;p>Continuously increase the concurrency level to test the upper limit of 
the server&amp;rsquo;s ability to provide services.&lt;/p>
+&lt;h6 id="pressure-parameters">Pressure Parameters&lt;/h6>
+&lt;p>Duration: 5 minutes.&lt;/p>
+&lt;h6 id="maximum-insertion-speed-of-vertices">Maximum Insertion Speed of 
Vertices:&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/vertex_batch.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发3500,顶点的吞吐量是261,每秒可处理的数据:261*200=52200/s&lt;/li>
+&lt;li>At a concurrency level of 3500, the throughput of vertices is 261, and 
the amount of data processed per second is 52,200 (261 * 200).&lt;/li>
 &lt;/ul>
-&lt;h6 id="边的最大插入速度">边的最大插入速度&lt;/h6>
+&lt;h6 id="maximum-insertion-speed-of-edges">Maximum Insertion Speed of 
Edges:&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/edge_batch.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion-1">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发1000,边的吞吐量是323,每秒可处理的数据:323*500=161500/s&lt;/li>
+&lt;li>At a concurrency level of 1000, the throughput of edges is 323, and the 
amount of data processed per second is 161,500 (323 * 500).&lt;/li>
 &lt;/ul>
-&lt;h4 id="42-single插入">4.2 single插入&lt;/h4>
-&lt;h5 id="421-压力上限测试">4.2.1 压力上限测试&lt;/h5>
-&lt;h6 id="测试方法-1">测试方法&lt;/h6>
-&lt;p>不断提升并发量,测试server仍能正常提供服务的压力上限&lt;/p>
-&lt;h6 id="压力参数-1">压力参数&lt;/h6>
+&lt;h4 id="42-single-insertion">4.2 Single Insertion&lt;/h4>
+&lt;h5 id="421-pressure-upper-limit-test">4.2.1 Pressure Upper Limit 
Test&lt;/h5>
+&lt;h6 id="test-method-1">Test Method&lt;/h6>
+&lt;p>Continuously increase the concurrency level to test the upper limit of 
the server&amp;rsquo;s ability to provide services.&lt;/p>
+&lt;h6 id="pressure-parameters-1">Pressure Parameters&lt;/h6>
 &lt;ul>
-&lt;li>持续时间:5min&lt;/li>
-&lt;li>服务异常标志:错误率大于0.00%&lt;/li>
+&lt;li>Duration: 5 minutes.&lt;/li>
+&lt;li>Service exception mark: Error rate greater than 0.00%.&lt;/li>
 &lt;/ul>
-&lt;h6 id="顶点的单条插入">顶点的单条插入&lt;/h6>
+&lt;h6 id="single-insertion-of-vertices">Single Insertion of Vertices:&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/vertex_single.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion-2">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发9000,吞吐量为8400,顶点的单条插入并发能力为9000&lt;/li>
+&lt;li>At a concurrency level of 9000, the throughput is 8400, and the 
single-insertion concurrency capability for vertices is 9000.&lt;/li>
 &lt;/ul>
-&lt;h6 id="边的单条插入">边的单条插入&lt;/h6>
+&lt;h6 id="single-insertion-of-edges">Single Insertion of Edges:&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/edge_single.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion-3">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发4500,吞吐量是4160,边的单条插入并发能力为4500&lt;/li>
+&lt;li>At a concurrency level of 4500, the throughput is 4160, and the 
single-insertion concurrency capability for edges is 4500.&lt;/li>
 &lt;/ul>
-&lt;h4 id="43-按id查询">4.3 按id查询&lt;/h4>
-&lt;h5 id="431-压力上限测试">4.3.1 压力上限测试&lt;/h5>
-&lt;h6 id="测试方法-2">测试方法&lt;/h6>
-&lt;p>不断提升并发量,测试server仍能正常提供服务的压力上限&lt;/p>
-&lt;h6 id="压力参数-2">压力参数&lt;/h6>
+&lt;h4 id="43-query-by-id">4.3 Query by ID&lt;/h4>
+&lt;h5 id="431-pressure-upper-limit-test">4.3.1 Pressure Upper Limit 
Test&lt;/h5>
+&lt;h6 id="test-method-2">Test Method&lt;/h6>
+&lt;p>Continuously increase the concurrency and test the upper limit of the 
pressure that the server can still provide services normally.&lt;/p>
+&lt;h6 id="pressure-parameters-2">Pressure Parameters&lt;/h6>
 &lt;ul>
-&lt;li>持续时间:5min&lt;/li>
-&lt;li>服务异常标志:错误率大于0.00%&lt;/li>
+&lt;li>Duration: 5 minutes&lt;/li>
+&lt;li>Service exception flag: error rate greater than 0.00%&lt;/li>
 &lt;/ul>
-&lt;h6 id="顶点的按id查询">顶点的按id查询&lt;/h6>
+&lt;h6 id="query-by-id-for-vertices">Query by ID for vertices&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/vertex_id_query.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion-4">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发14500,吞吐量是13576,顶点的按id查询的并发能力为14500,平均延时为11ms&lt;/li>
+&lt;li>The concurrent capacity of the vertex search by ID is 14500, with a 
throughput of 13576 and an average delay of 11ms.&lt;/li>
 &lt;/ul>
-&lt;h6 id="边的按id查询">边的按id查询&lt;/h6>
+&lt;h6 id="edge-search-by-id">Edge search by ID&lt;/h6>
 &lt;center>
 &lt;img src="/docs/images/API-perf/v0.5.6/cassandra/edge_id_query.png" 
alt="image">
 &lt;/center>
-&lt;p>####### 结论:&lt;/p>
+&lt;h6 id="conclusion-5">Conclusion:&lt;/h6>
 &lt;ul>
-&lt;li>并发12000,吞吐量是10688,边的按id查询的并发能力为12000,平均延时为63ms&lt;/li>
+&lt;li>For edge ID-based queries, the server&amp;rsquo;s concurrent capacity 
is up to 12,000, with a throughput of 10,688 and an average latency of 
63ms.&lt;/li>
 &lt;/ul></description></item><item><title>Docs: 
v0.4.4</title><link>/docs/performance/api-preformance/hugegraph-api-0.4.4/</link><pubDate>Mon,
 01 Jan 0001 00:00:00 
+0000</pubDate><guid>/docs/performance/api-preformance/hugegraph-api-0.4.4/</guid><description>
 &lt;h3 id="1-test-environment">1 Test environment&lt;/h3>
 &lt;p>Target Machine Information&lt;/p>
diff --git a/en/sitemap.xml b/en/sitemap.xml
index 7f603f23..197cf871 100644
--- a/en/sitemap.xml
+++ b/en/sitemap.xml
@@ -1 +1 @@
-<?xml version="1.0" encoding="utf-8" standalone="yes"?><urlset 
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"; 
xmlns:xhtml="http://www.w3.org/1999/xhtml";><url><loc>/docs/guides/architectural/</loc><lastmod>2023-05-12T23:46:05-05:00</lastmod><xhtml:link
 rel="alternate" hreflang="cn" 
href="/cn/docs/guides/architectural/"/><xhtml:link rel="alternate" 
hreflang="en" 
href="/docs/guides/architectural/"/></url><url><loc>/docs/config/config-guide/</loc><lastmod>2023-05-10T12:08:15+08:00</last
 [...]
\ No newline at end of file
+<?xml version="1.0" encoding="utf-8" standalone="yes"?><urlset 
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"; 
xmlns:xhtml="http://www.w3.org/1999/xhtml";><url><loc>/docs/guides/architectural/</loc><lastmod>2023-05-12T23:46:05-05:00</lastmod><xhtml:link
 rel="alternate" hreflang="cn" 
href="/cn/docs/guides/architectural/"/><xhtml:link rel="alternate" 
hreflang="en" 
href="/docs/guides/architectural/"/></url><url><loc>/docs/config/config-guide/</loc><lastmod>2023-05-10T12:08:15+08:00</last
 [...]
\ No newline at end of file
diff --git a/sitemap.xml b/sitemap.xml
index 948153c9..b874e5ac 100644
--- a/sitemap.xml
+++ b/sitemap.xml
@@ -1 +1 @@
-<?xml version="1.0" encoding="utf-8" standalone="yes"?><sitemapindex 
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9";><sitemap><loc>/en/sitemap.xml</loc><lastmod>2023-05-16T23:29:47-05:00</lastmod></sitemap><sitemap><loc>/cn/sitemap.xml</loc><lastmod>2023-05-14T22:39:27+08:00</lastmod></sitemap></sitemapindex>
\ No newline at end of file
+<?xml version="1.0" encoding="utf-8" standalone="yes"?><sitemapindex 
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9";><sitemap><loc>/en/sitemap.xml</loc><lastmod>2023-05-16T23:30:00-05:00</lastmod></sitemap><sitemap><loc>/cn/sitemap.xml</loc><lastmod>2023-05-14T22:39:27+08:00</lastmod></sitemap></sitemapindex>
\ No newline at end of file


Reply via email to