This is an automated email from the ASF dual-hosted git repository.

jin pushed a commit to branch dev
in repository https://gitbox.apache.org/repos/asf/incubator-hugegraph-ai.git

commit 76212e15170544056a78cbf6d7a0da26f9631878
Author: imbajin <[email protected]>
AuthorDate: Tue Nov 26 19:30:23 2024 +0800

    fix: text2gremlin schema miss
---
 .../src/hugegraph_llm/demo/rag_demo/text2gremlin_block.py          | 6 ++++--
 .../src/hugegraph_llm/operators/hugegraph_op/graph_rag_query.py    | 7 ++-----
 2 files changed, 6 insertions(+), 7 deletions(-)

diff --git 
a/hugegraph-llm/src/hugegraph_llm/demo/rag_demo/text2gremlin_block.py 
b/hugegraph-llm/src/hugegraph_llm/demo/rag_demo/text2gremlin_block.py
index 0c39d8d..4a0607b 100644
--- a/hugegraph-llm/src/hugegraph_llm/demo/rag_demo/text2gremlin_block.py
+++ b/hugegraph-llm/src/hugegraph_llm/demo/rag_demo/text2gremlin_block.py
@@ -25,6 +25,7 @@ from hugegraph_llm.config import prompt
 from hugegraph_llm.models.embeddings.init_embedding import Embeddings
 from hugegraph_llm.models.llms.init_llm import LLMs
 from hugegraph_llm.operators.gremlin_generate_task import GremlinGenerator
+from hugegraph_llm.operators.hugegraph_op.schema_manager import SchemaManager
 from hugegraph_llm.utils.log import log
 
 
@@ -59,8 +60,9 @@ def gremlin_generate(inp, example_num, schema) -> Tuple[str, 
str]:
                 except json.JSONDecodeError as e:
                     log.error("Invalid JSON schema provided: %s", e)
                     return "Invalid JSON schema, please check the format 
carefully.", ""
-
-    context = 
generator.example_index_query(example_num).gremlin_generate(schema).run(query=inp)
+    # FIXME: schema is not used in gremlin_generate() step, no context for it 
(enhance the logic here)
+    updated_schema = SchemaManager(graph_name=schema).schema.getSchema()
+    context = 
generator.example_index_query(example_num).gremlin_generate(updated_schema).run(query=inp)
     return context.get("match_result", "No Results"), context["result"]
 
 
diff --git 
a/hugegraph-llm/src/hugegraph_llm/operators/hugegraph_op/graph_rag_query.py 
b/hugegraph-llm/src/hugegraph_llm/operators/hugegraph_op/graph_rag_query.py
index 1ce5c60..40f2670 100644
--- a/hugegraph-llm/src/hugegraph_llm/operators/hugegraph_op/graph_rag_query.py
+++ b/hugegraph-llm/src/hugegraph_llm/operators/hugegraph_op/graph_rag_query.py
@@ -131,10 +131,7 @@ class GraphRAGQuery:
         if not context.get("graph_result"):
             context = self._subgraph_query(context)
 
-        verbose = context.get("verbose") or False
-        if verbose:
-            log.debug("\033[93mKnowledge from Graph:\n%s\033[0m", 
"\n".join(context["graph_result"]))
-
+        log.debug("\033[93mKnowledge from Graph:\n%s\033[0m", 
"\n".join(context["graph_result"]))
         return context
 
     def _gremlin_generate_query(self, context: Dict[str, Any]) -> Dict[str, 
Any]:
@@ -242,7 +239,7 @@ class GraphRAGQuery:
             context["knowledge_with_degree"] = knowledge_with_degree
             context["graph_context_head"] = (
                 f"The following are graph knowledge in {self._max_deep} depth, 
e.g:\n"
-                "`vertexA --[links]--> vertexB <--[links]-- vertexC ...`"
+                "`vertexA--[links]-->vertexB<--[links]--vertexC ...`"
                 "extracted based on key entities as subject:\n"
             )
         return context

Reply via email to