This is an automated email from the ASF dual-hosted git repository.

jin pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/incubator-hugegraph-ai.git


The following commit(s) were added to refs/heads/main by this push:
     new 9e76c2a0 docs(llm): use AGENTS.md as LLM  standard doc (#299)
9e76c2a0 is described below

commit 9e76c2a0f6cfad226e99fddf887358b6f82ce5ec
Author: LingXiao Qi <[email protected]>
AuthorDate: Thu Sep 11 12:23:06 2025 +0800

    docs(llm): use AGENTS.md as LLM  standard doc (#299)
---
 .gitignore                                         |  2 +-
 README.md                                          | 24 ++++++++++++++++------
 hugegraph-llm/{basic-introduction.md => AGENTS.md} |  0
 hugegraph-llm/README.md                            | 15 +++++++++++---
 rules/README.md                                    |  8 ++++++--
 5 files changed, 37 insertions(+), 12 deletions(-)

diff --git a/.gitignore b/.gitignore
index 42a06764..76412112 100644
--- a/.gitignore
+++ b/.gitignore
@@ -135,7 +135,7 @@ celerybeat.pid
 # prompt config
 config_prompt.yaml*
 
-# AI-IDE prompt files (generated from basic-introduction.md)
+# AI-IDE prompt files (generated from AGENTS.md)
 
 # Claude Projects
 CLAUDE.md
diff --git a/README.md b/README.md
index e9d87ac7..14f02ca1 100644
--- a/README.md
+++ b/README.md
@@ -19,6 +19,7 @@
 > For a complete deployment guide and detailed examples, please refer to 
 > [hugegraph-llm/README.md](./hugegraph-llm/README.md)
 
 ### Prerequisites
+
 - Python 3.10+ (required for hugegraph-llm)
 - [uv](https://docs.astral.sh/uv/) 0.7+ (required for workspace management)
 - HugeGraph Server 1.3+ (1.5+ recommended)
@@ -75,6 +76,7 @@ python -m hugegraph_llm.demo.rag_demo.app
 > Examples assume you've activated the virtual environment with `source 
 > .venv/bin/activate`
 
 #### GraphRAG - Question Answering
+
 ```python
 from hugegraph_llm.operators.graph_rag_task import RAGPipeline
 
@@ -92,6 +94,7 @@ result = (graph_rag
 ```
 
 #### Knowledge Graph Construction
+
 ```python
 from hugegraph_llm.models.llms.init_llm import LLMs
 from hugegraph_llm.operators.kg_construction_task import KgBuilder
@@ -109,6 +112,7 @@ builder = KgBuilder(LLMs().get_chat_llm())
 ```
 
 #### Graph Machine Learning
+
 ```bash
 # Install ML dependencies (ml module is not in workspace)
 uv sync --extra ml
@@ -122,14 +126,18 @@ python examples/your_ml_example.py
 ## 📦 Modules
 
 ### [hugegraph-llm](./hugegraph-llm) [![Ask 
DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/apache/incubator-hugegraph-ai)
+
 Large language model integration for graph applications:
+
 - **GraphRAG**: Retrieval-augmented generation with graph data
-- **Knowledge Graph Construction**: Build KGs from text automatically  
+- **Knowledge Graph Construction**: Build KGs from text automatically
 - **Natural Language Interface**: Query graphs using natural language
 - **AI Agents**: Intelligent graph analysis and reasoning
 
 ### [hugegraph-ml](./hugegraph-ml)
+
 Graph machine learning with 20+ implemented algorithms:
+
 - **Node Classification**: GCN, GAT, GraphSAGE, APPNP, etc.
 - **Graph Classification**: DiffPool, P-GNN, etc.
 - **Graph Embedding**: DeepWalk, Node2Vec, GRACE, etc.
@@ -139,7 +147,9 @@ Graph machine learning with 20+ implemented algorithms:
 > hugegraph-ml is not part of the workspace but linked via path dependency
 
 ### [hugegraph-python-client](./hugegraph-python-client)
+
 Python client for HugeGraph operations:
+
 - **Schema Management**: Define vertex/edge labels and properties
 - **CRUD Operations**: Create, read, update, delete graph data
 - **Gremlin Queries**: Execute graph traversal queries
@@ -154,6 +164,7 @@ Python client for HugeGraph operations:
 ## 🔗 Related HugeGraph Projects
 
 And here are links of other repositories:
+
 1. [hugegraph](https://github.com/apache/hugegraph) (graph's core component - 
Graph server + PD + Store)
 2. [hugegraph-toolchain](https://github.com/apache/hugegraph-toolchain) (graph 
tools 
**[loader](https://github.com/apache/incubator-hugegraph-toolchain/tree/master/hugegraph-loader)/[dashboard](https://github.com/apache/incubator-hugegraph-toolchain/tree/master/hugegraph-hubble)/[tool](https://github.com/apache/incubator-hugegraph-toolchain/tree/master/hugegraph-tools)/[client](https://github.com/apache/incubator-hugegraph-toolchain/tree/master/hugegraph-client)**)
 3. [hugegraph-computer](https://github.com/apache/hugegraph-computer) 
(integrated **graph computing** system)
@@ -165,19 +176,19 @@ We welcome contributions! Please see our [contribution 
guidelines](https://hugeg
 
 ### 🤖 AI Coding Guidelines for Developers
 
-> [!IMPORTANT]
-> **For project contributors using AI coding tools**, please follow these 
guidelines:
-> 
+> [!IMPORTANT] > **For project contributors using AI coding tools**, please 
follow these guidelines:
+>
 > - **Start Here**: First read `rules/README.md` for the complete AI-assisted 
 > development workflow
-> - **Module Context**: When `basic-introduction.md` exists in any module, 
rename it as context for your LLM (e.g., `CLAUDE.md`, `copilot-instructions.md`)
+> - **Module Context**: When `AGENTS.md` exists in any module, rename it as 
context for your LLM (e.g., `CLAUDE.md`, `copilot-instructions.md`)
 > - **Documentation Standards**: Follow the structured documentation approach 
 > in `rules/prompts/project-general.md`
 > - **Deep Analysis**: For complex features, refer to 
 > `rules/prompts/project-deep.md` for comprehensive code analysis methodology
 > - **Code Quality**: Maintain consistency with existing patterns and ensure 
 > proper type annotations
 > - **Testing**: Follow TDD principles and ensure comprehensive test coverage 
 > for new features
-> 
+>
 > These guidelines ensure consistent code quality and maintainable development 
 > workflow with AI assistance.
 
 **Development Setup:**
+
 ```bash
 # 1. Clone and navigate to project
 git clone https://github.com/apache/incubator-hugegraph-ai.git
@@ -204,6 +215,7 @@ uv add --group dev pytest-mock  # Add to dev group
 ```
 
 **Key Points:**
+
 - Use [GitHub Desktop](https://desktop.github.com/) for easier PR management
 - Check existing issues before reporting bugs
 
diff --git a/hugegraph-llm/basic-introduction.md b/hugegraph-llm/AGENTS.md
similarity index 100%
rename from hugegraph-llm/basic-introduction.md
rename to hugegraph-llm/AGENTS.md
diff --git a/hugegraph-llm/README.md b/hugegraph-llm/README.md
index 63642557..526320d4 100644
--- a/hugegraph-llm/README.md
+++ b/hugegraph-llm/README.md
@@ -7,6 +7,7 @@
 HugeGraph-LLM is a comprehensive toolkit that combines the power of graph 
databases with large language models. It enables seamless integration between 
HugeGraph and LLMs for building intelligent applications.
 
 ### Key Features
+
 - 🏗️ **Knowledge Graph Construction** - Build KGs automatically using LLMs + 
HugeGraph
 - 🗣️ **Natural Language Querying** - Operate graph databases using natural 
language (Gremlin/Cypher)
 - 🔍 **Graph-Enhanced RAG** - Leverage knowledge graphs to improve answer 
accuracy (GraphRAG & Graph Agent)
@@ -16,6 +17,7 @@ For detailed source code doc, visit our 
[DeepWiki](https://deepwiki.com/apache/i
 ## 📋 Prerequisites
 
 > [!IMPORTANT]
+>
 > - **Python**: 3.10+ (not tested on 3.12)
 > - **HugeGraph Server**: 1.3+ (recommended: 1.5+)
 > - **UV Package Manager**: 0.7+
@@ -53,6 +55,7 @@ docker-compose -f docker-compose-network.yml ps
 For more control over individual components:
 
 #### Available Images
+
 - **`hugegraph/rag`** - Development image with source code access
 - **`hugegraph/rag-bin`** - Production-optimized binary (compiled with Nuitka)
 
@@ -118,6 +121,7 @@ python -m hugegraph_llm.config.generate --update
 ```
 
 > [!TIP]
+>
 > - `uv sync` automatically creates virtual environment (.venv) and installs 
 > all dependencies
 > - Activate once with `source .venv/bin/activate` - all subsequent commands 
 > assume this environment
 > - Check our [Quick Start 
 > Guide](https://github.com/apache/incubator-hugegraph-ai/blob/main/hugegraph-llm/quick_start.md)
 >  for detailed usage examples
@@ -131,10 +135,12 @@ python -m hugegraph_llm.config.generate --update
 Use the Gradio interface for visual knowledge graph building:
 
 **Input Options:**
+
 - **Text**: Direct text input for RAG index creation
 - **Files**: Upload TXT or DOCX files (multiple selection supported)
 
 **Schema Configuration:**
+
 - **Custom Schema**: JSON format following our 
[template](https://github.com/apache/incubator-hugegraph-ai/blob/aff3bbe25fa91c3414947a196131be812c20ef11/hugegraph-llm/src/hugegraph_llm/config/config_data.py#L125)
 - **HugeGraph Schema**: Use existing graph instance schema (e.g., "hugegraph")
 
@@ -163,6 +169,7 @@ builder = KgBuilder(LLMs().get_chat_llm())
 ```
 
 **Pipeline Workflow:**
+
 ```mermaid
 graph LR
     A[Import Schema] --> B[Chunk Split]
@@ -200,6 +207,7 @@ graph_rag = RAGPipeline()
 ```
 
 **RAG Pipeline Flow:**
+
 ```mermaid
 graph TD
     A[User Query] --> B[Extract Keywords]
@@ -222,6 +230,7 @@ After running the demo, configuration files are 
automatically generated:
 
 - **Environment**: `hugegraph-llm/.env`
 - **Prompts**: 
`hugegraph-llm/src/hugegraph_llm/resources/demo/config_prompt.yaml`
+
 ### Language Support
 
 The system supports both English and Chinese prompts. To switch languages:
@@ -230,6 +239,7 @@ The system supports both English and Chinese prompts. To 
switch languages:
 2. **Restart the application**: The system will automatically regenerate 
prompts in the selected language
 
 **Supported Values:**
+
 - `LANGUAGE=EN` - English prompts (default)
 - `LANGUAGE=CN` - Chinese prompts (中文提示词)
 
@@ -240,11 +250,10 @@ The system supports both English and Chinese prompts. To 
switch languages:
 
 ## 🤖 Developer Guidelines
 
-> [!IMPORTANT]
-> **For developers contributing to hugegraph-llm with AI coding assistance:**
+> [!IMPORTANT] > **For developers contributing to hugegraph-llm with AI coding 
assistance:**
 >
 > - **Start Here**: First read `../rules/README.md` for the complete 
 > AI-assisted development workflow
-> - **Module Context**: Rename `basic-introduction.md` in this directory as 
context for your LLM (e.g., `CLAUDE.md`, `copilot-instructions.md`)
+> - **Module Context**: Rename `AGENTS.md` in this directory as context for 
your LLM (e.g., `CLAUDE.md`, `copilot-instructions.md`)
 > - **Code Analysis**: Follow comprehensive analysis methodology in 
 > `../rules/prompts/project-deep.md`
 > - **Documentation**: Maintain structured documentation standards from 
 > `../rules/prompts/project-general.md`
 > - **Quality Standards**: Ensure type annotations, proper testing, and 
 > consistent patterns
diff --git a/rules/README.md b/rules/README.md
index 2e78d48a..8b2f6db0 100644
--- a/rules/README.md
+++ b/rules/README.md
@@ -16,6 +16,8 @@
 
 - 为了保证上下文质量,最佳实践是 STEP4(execute)时新开一个 Chat
 
+- ⭐️ 欢迎维护和补充各模块下的 AGENTS.md, 迭代为面向 AI 的最佳语料和规范
+
 ### 开发者阅读指南
 
 > 如果你是使用本 AI Coding 助手的开发者,请注意以下要点:
@@ -73,8 +75,10 @@
 
 ## 项目规范
 
-每个模块下的 `base_introduction.md`介绍各自模块的最核心的结构/概览,可直接重命名为 GEMINI/CLAUDE/copilot.md 
给 `LLM Coding` 
-作为默认参考考 (./{module_name}/base-introduction.md)
+每个模块下的 `AGENTS.md`负责介绍各自模块的最核心的结构/概览(面向 AI),统一给 `LLM Coding`
+作为指导文档 (./{module_name}/AGENTS.md)
+
+- 命名参考[AGENTS.md](https://agents.md/),也可重命名为 GEMINI/CLAUDE.md 等
 
 ## 测试规范
 

Reply via email to