truedichotomy opened a new issue #17108: MethodError during training when 
running mx.fit in regression-example.jl (Julia)
URL: https://github.com/apache/incubator-mxnet/issues/17108
 
 
   ## Description
   MethodError during training when running mx.fit in regression-example.jl in 
Julia 1.3 on macOS 10.15.2.
   
   ### Error Message
   julia> mx.fit(model, optimizer, trainprovider,
                 initializer = mx.NormalInitializer(0.0, 0.1),
                 eval_metric = mx.MSE(),
                 eval_data = evalprovider,
                 n_epoch = 20,
                 callbacks = [mx.speedometer()])
   [ Info: Start training on Context[CPU0]
   [ Info: Initializing parameters...
   [ Info: Creating KVStore...
   [ Info: TempSpace: Total 0 MB allocated on CPU0
   [ Info: Start training...
   ERROR: MethodError: no method matching 
(::MXNet.mx.var"#5784#5785")(::Float64, ::NDArray{Float32,1})
   Closest candidates are:
     #5784(::Any) at /Users/c2po/.julia/packages/MXNet/XoVCW/src/metric.jl:263
   Stacktrace:
    [1] 
(::Base.var"#3#4"{MXNet.mx.var"#5784#5785"})(::Tuple{Float64,NDArray{Float32,1}})
 at ./generator.jl:36
    [2] iterate at ./generator.jl:47 [inlined]
    [3] mapfoldl_impl(::Function, ::Function, ::NamedTuple{(),Tuple{}}, 
::Base.Generator{Base.Iterators.Zip{Tuple{Float64,Array{NDArray{Float32,1},1}}},Base.var"#3#4"{MXNet.mx.var"#5784#5785"}})
 at ./reduce.jl:55
    [4] #mapfoldl#186 at ./reduce.jl:72 [inlined]
    [5] mapfoldl at ./reduce.jl:72 [inlined]
    [6] #mapreduce#194 at ./reduce.jl:200 [inlined]
    [7] mapreduce at ./reduce.jl:200 [inlined]
    [8] #reduce#196 at ./reduce.jl:357 [inlined]
    [9] reduce(::Function, 
::Base.Generator{Base.Iterators.Zip{Tuple{Float64,Array{NDArray{Float32,1},1}}},Base.var"#3#4"{MXNet.mx.var"#5784#5785"}})
 at ./reduce.jl:357
    [10] 
#mapreduce#195(::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}},
 ::typeof(mapreduce), ::Function, ::Function, ::Float64, ::Vararg{Any,N} where 
N) at ./reduce.jl:201
    [11] mapreduce(::Function, ::Function, ::Float64, 
::Array{NDArray{Float32,1},1}) at ./reduce.jl:201
    [12] get(::MSE{1}) at 
/Users/c2po/.julia/packages/MXNet/XoVCW/src/metric.jl:263
    [13] 
#fit#5876(::Base.Iterators.Pairs{Symbol,Any,NTuple{5,Symbol},NamedTuple{(:initializer,
 :eval_metric, :eval_data, :n_epoch, 
:callbacks),Tuple{NormalInitializer,MSE{1},ArrayDataProvider{Float32,2},Int64,Array{MXNet.mx.BatchCallback,1}}}},
 ::typeof(MXNet.mx.fit), ::FeedForward, ::ADAM, ::ArrayDataProvider{Float32,2}) 
at /Users/c2po/.julia/packages/MXNet/XoVCW/src/model.jl:545
    [14] (::MXNet.mx.var"#kw##fit")(::NamedTuple{(:initializer, :eval_metric, 
:eval_data, :n_epoch, 
:callbacks),Tuple{NormalInitializer,MSE{1},ArrayDataProvider{Float32,2},Int64,Array{MXNet.mx.BatchCallback,1}}},
 ::typeof(MXNet.mx.fit), ::FeedForward, ::ADAM, ::ArrayDataProvider{Float32,2}) 
at ./none:0
    [15] top-level scope at REPL[62]:1
   
   ## To Reproduce
   I was simply following the regression-example.jl provided here: 
https://github.com/apache/incubator-mxnet/blob/master/julia/examples/regression-example.jl
   
   The error occurred when I was doing initial training with a small batch size 
in lines 81-86.
   
   ## Environment
   
   We recommend using our script for collecting the diagnositc information. Run 
the following command and paste the outputs below:
   ```
   curl --retry 10 -s 
https://raw.githubusercontent.com/dmlc/gluon-nlp/master/tools/diagnose.py | 
python
   
   ----------Python Info----------
   Version      : 3.7.4
   Compiler     : Clang 4.0.1 (tags/RELEASE_401/final)
   Build        : ('default', 'Aug 13 2019 15:17:50')
   Arch         : ('64bit', '')
   ------------Pip Info-----------
   Version      : 19.3.1
   Directory    : /Users/c2po/anaconda3/lib/python3.7/site-packages/pip
   ----------MXNet Info-----------
   No MXNet installed.
   ----------System Info----------
   Platform     : Darwin-19.2.0-x86_64-i386-64bit
   system       : Darwin
   node         : xxx.local
   release      : 19.2.0
   version      : Darwin Kernel Version 19.2.0: Sat Nov  9 03:47:04 PST 2019; 
root:xnu-6153.61.1~20/RELEASE_X86_64
   ----------Hardware Info----------
   machine      : x86_64
   processor    : i386
   b'machdep.cpu.brand_string: Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz'
   b'machdep.cpu.features: FPU VME DE PSE TSC MSR PAE MCE CX8 APIC SEP MTRR PGE 
MCA CMOV PAT PSE36 CLFSH DS ACPI MMX FXSR SSE SSE2 SS HTT TM PBE SSE3 PCLMULQDQ 
DTES64 MON DSCPL VMX SMX EST TM2 SSSE3 FMA CX16 TPR PDCM SSE4.1 SSE4.2 x2APIC 
MOVBE POPCNT AES PCID XSAVE OSXSAVE SEGLIM64 TSCTMR AVX1.0 RDRAND F16C'
   b'machdep.cpu.leaf7_features: RDWRFSGS TSC_THREAD_OFFSET SGX BMI1 HLE AVX2 
SMEP BMI2 ERMS INVPCID RTM FPU_CSDS MPX RDSEED ADX SMAP CLFSOPT IPT SGXLC 
MDCLEAR TSXFA IBRS STIBP L1DF SSBD'
   b'machdep.cpu.extfeatures: SYSCALL XD 1GBPAGE EM64T LAHF LZCNT PREFETCHW 
RDTSCP TSCI'
   ----------Network Test----------
   Setting timeout: 10
   Timing for MXNet: https://github.com/apache/incubator-mxnet, DNS: 0.1604 
sec, LOAD: 0.7992 sec.
   Timing for GluonNLP GitHub: https://github.com/dmlc/gluon-nlp, DNS: 0.0006 
sec, LOAD: 0.6267 sec.
   Timing for GluonNLP: http://gluon-nlp.mxnet.io, DNS: 0.2079 sec, LOAD: 
0.5721 sec.
   Timing for D2L: http://d2l.ai, DNS: 0.2246 sec, LOAD: 0.2906 sec.
   Timing for D2L (zh-cn): http://zh.d2l.ai, DNS: 0.1295 sec, LOAD: 0.3294 sec.
   Timing for FashionMNIST: 
https://repo.mxnet.io/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz, 
DNS: 0.2297 sec, LOAD: 2.0067 sec.
   Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.1510 sec, LOAD: 
1.4693 sec.
   Timing for Conda: https://repo.continuum.io/pkgs/free/, DNS: 0.2071 sec, 
LOAD: 0.4814 sec.
   ```
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

Reply via email to