piiswrong closed pull request #8588: reimplement cross-entropy operator in recommender example with NDArray URL: https://github.com/apache/incubator-mxnet/pull/8588
This is a PR merged from a forked repository. As GitHub hides the original diff on merge, it is displayed below for the sake of provenance: As this is a foreign pull request (from a fork), the diff is supplied below (as it won't show otherwise due to GitHub magic): diff --git a/example/recommenders/crossentropy.py b/example/recommenders/crossentropy.py index 51648b0eb1..d8577ed898 100644 --- a/example/recommenders/crossentropy.py +++ b/example/recommenders/crossentropy.py @@ -20,6 +20,7 @@ """Cross-entropy loss layer for MXNet. """ import os +import time import numpy as np import mxnet as mx @@ -51,10 +52,10 @@ def forward(self, is_train, req, in_data, out_data, aux): # d = number of dimensions actually_calculate_loss = False if actually_calculate_loss: - p = in_data[0].asnumpy() # shape=(b,d) - y = in_data[1].asnumpy() - out = y * np.log(p+self.eps) + (1.-y) * np.log((self.eps1) - p) - self.assign(out_data[0], req[0], mx.nd.array(out)) + p = in_data[0] # shape=(b,d) + y = in_data[1] + out = y * mx.nd.log(p+self.eps) + (1.-y) * mx.nd.log((self.eps1) - p) + self.assign(out_data[0], req[0], out) else: # Just copy the predictions forward self.assign(out_data[0], req[0], in_data[0]) @@ -70,19 +71,19 @@ def approx_backward(self, req, out_grad, in_data, out_data, in_grad, aux): grad = 1/(p-1+y) which is more numerically stable """ - p = in_data[0].asnumpy() # shape=(b,d) - y = in_data[1].asnumpy() + p = in_data[0] # shape=(b,d) + y = in_data[1] grad = -1. / (p - self.eps_1 + y) - self.assign(in_grad[0], req[0], mx.nd.array(grad)) + self.assign(in_grad[0], req[0], grad) def exact_backward(self, req, out_grad, in_data, out_data, in_grad, aux): """grad = (y-p)/(p-p^2) """ - p = in_data[0].asnumpy() # shape=(b,d) - y = in_data[1].asnumpy() # seems right + p = in_data[0] # shape=(b,d) + y = in_data[1] # seems right grad = (p - y) / ((p+self.eps) * (self.eps1 - p)) - self.assign(in_grad[0], req[0], mx.nd.array(grad)) + self.assign(in_grad[0], req[0], grad) @mx.operator.register("CrossEntropyLoss") @@ -126,5 +127,15 @@ def infer_shape(self, in_shape): out = e.outputs[0].asnumpy() if np.abs(out).max() > 1e20: raise ValueError("output too high!") - print("Done with test") + print("performance test") + sz = (6,4) + d = mx.nd.array(rand.uniform(0.01,0.99,sz)) + l = mx.nd.array(rand.randint(0,2,sz)) + e = net.bind(ctx=mx.cpu(), args={'data':d, 'labs':l}) + tic = time.time() + for i in range(5000): + e.forward() + e.outputs[0].wait_to_read() + print("5000 tests costs time: %f s" % (time.time()-tic)) + print("Done with test") ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org With regards, Apache Git Services