tz-hmc commented on issue #8591: How do I make a siamese network with pretrained models (esp. keeping the weights the same?) URL: https://github.com/apache/incubator-mxnet/issues/8591#issuecomment-343367913 Hey again, I tried something like this, but I still have a lot of questions: ``` sym1, arg_params, aux_params = get_model() sym2, arg_params, aux_params = get_model() mod1 = mx.mod.Module(symbol=sym1, context=mx.cpu(), label_names=None) mod2 = mx.mod.Module(symbol=sym2, context=mx.cpu(), label_names=None) mod1.bind(for_training=True, shared_module=mod2, data_shapes=[('data', (1,3,224,224))], # true to train label_shapes=mod1._label_shapes) mod2.bind(for_training=True, shared_module=mod1, data_shapes=[('data', (1,3,224,224))], # true to train label_shapes=mod2._label_shapes) mod1.set_params(arg_params, aux_params, allow_missing=True) mod2.set_params(arg_params, aux_params, allow_missing=True) out1 = sym1.get_internals()['flatten0_output'] out2 = sym2.get_internals()['flatten0_output'] siamese_out = mx.sym.Concat(out1, out2, dim=0) # Stacked network after it fc1 = mx.symbol.FullyConnected(data = siamese_out, name='fc1', num_hidden=128) act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu") fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64) act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu") fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=num_classes) mlp = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax') # new_args = dict() mod3 = mx.mod.Module(fc1, context=mx.cpu(), label_names=None) mod3 = fe_mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))]) mod3.set_params(arg_params, aux_params) ``` I only want the first part of this network (layers attached to mod2 & mod1) to be shared. Would something like this work & still backpropagate errors appropriately when fitted? Having to run mod.fit on each part of the network could be inconvenient. Is there a way around this?
---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org With regards, Apache Git Services