tz-hmc commented on issue #8591: How do I make a siamese network with 
pretrained models (esp. keeping the weights the same?)
URL: 
https://github.com/apache/incubator-mxnet/issues/8591#issuecomment-343367913
 
 
   Hey again,
   
   I tried something like this, but I still have a lot of questions:
   
   ```
       sym1, arg_params, aux_params = get_model()
       sym2, arg_params, aux_params = get_model()
   
       mod1 = mx.mod.Module(symbol=sym1, context=mx.cpu(), label_names=None)
       mod2 = mx.mod.Module(symbol=sym2, context=mx.cpu(), label_names=None)
       mod1.bind(for_training=True, shared_module=mod2, data_shapes=[('data', 
(1,3,224,224))], # true to train
                label_shapes=mod1._label_shapes)
       mod2.bind(for_training=True, shared_module=mod1, data_shapes=[('data', 
(1,3,224,224))], # true to train
                label_shapes=mod2._label_shapes)
       mod1.set_params(arg_params, aux_params, allow_missing=True)
       mod2.set_params(arg_params, aux_params, allow_missing=True)
   
       out1 = sym1.get_internals()['flatten0_output']
       out2 = sym2.get_internals()['flatten0_output']
       siamese_out = mx.sym.Concat(out1, out2, dim=0)
   
       # Stacked network after it
       fc1  = mx.symbol.FullyConnected(data = siamese_out, name='fc1', 
num_hidden=128)
       act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu")
       fc2  = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 
64)
       act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu")
       fc3  = mx.symbol.FullyConnected(data = act2, name='fc3', 
num_hidden=num_classes)
       mlp  = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax')
       # new_args = dict()
   
       mod3 = mx.mod.Module(fc1, context=mx.cpu(), label_names=None)
       mod3 = fe_mod.bind(for_training=False, data_shapes=[('data', 
(1,3,224,224))])
       mod3.set_params(arg_params, aux_params)
   ```
   
   I only want the first part of this network (layers attached to mod2 & mod1) 
to be shared. Would something like this work & still backpropagate errors 
appropriately when fitted?
   
   Having to run mod.fit on each part of the network could be inconvenient. Is 
there a way around this? 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

Reply via email to