piiswrong commented on a change in pull request #10621: Updated tutorials page.
URL: https://github.com/apache/incubator-mxnet/pull/10621#discussion_r183117310
 
 

 ##########
 File path: docs/tutorials/index.md
 ##########
 @@ -1,269 +1,153 @@
 # Tutorials
 
-MXNet has two primary high-level interfaces for its deep learning engine: the 
Gluon API and the Module API. Tutorials for each are provided below.
+MXNet tutorials can be found in this section. A variety of language bindings 
are available for MXNet (including Python, Scala, C++ and R) and we have a 
different tutorial section for each language.
 
-`TL;DR:` If you are new to deep learning or MXNet, you should start with the 
Gluon tutorials.
+Are you new to MXNet, and don't have a preference on language? We currently 
recommend starting with Python, and specifically the Gluon APIs (versus Module 
APIs) as they're more flexible and easier to debug.
 
-The difference between the two is an imperative versus symbolic programming 
style. Gluon makes it easy to prototype, build, and train deep learning models 
without sacrificing training speed by enabling both (1) intuitive imperative 
Python code development and (2) faster execution by automatically generating a 
symbolic execution graph using the hybridization feature.
+Another great resource for learning MXNet is our [examples 
section](https://github.com/apache/incubator-mxnet/tree/master/example) which 
includes a wide variety of models (from basic to state-of-the-art) for a wide 
variety of tasks including: object detection, style transfer, reinforcement 
learning, and many others.
 
-The Gluon and Module tutorials are in Python, but you can also find a variety 
of other MXNet tutorials, such as R, Scala, and C++ in the [Other Languages API 
Tutorials](#other-mxnet-api-tutorials) section below.
+<hr>
 
-[Example scripts and applications](#example-scripts-and-applications) as well 
as [contribution](#contributing-tutorials) info is below.
+## Python Tutorials
 
-<script type="text/javascript" src='../_static/js/options.js'></script>
+We have two types of API available for Python: Gluon APIs and Module APIs. 
[See here](/api/python/gluon/gluon.html) for a comparison.
 
+A comprehensive introduction to Gluon can be found at [The Straight 
Dope](http://gluon.mxnet.io/). Structured like a book, it build up from first 
principles of deep learning and take a theoretical walkthrough of progressively 
more complex models using the Gluon API. Also check out the [60-Minute Gluon 
Crash Course](http://gluon-crash-course.mxnet.io/) if you're short on time or 
have used other deep learning frameworks before.
 
-## Python API Tutorials
+Use the tutorial selector below to filter to the relevant tutorials. You might 
see a download link in the top right corner of some tutorials. Use this to 
download a Jupyter Notebook version of the tutorial, and re-run and adjust the 
code as you wish.
+
+<script type="text/javascript" src='../_static/js/options.js'></script>
 
 <!-- Gluon vs Module -->
+Select API:&nbsp;
 <div class="btn-group opt-group" role="group">
   <button type="button" class="btn btn-default opt active" 
style="font-size:22px">Gluon</button>
   <button type="button" class="btn btn-default opt"   
style="font-size:22px">Module</button>
 </div>
-
-
-<!-- Levels -->
-<div class="gluon module">
-<div class="btn-group opt-group" role="group">
-  <button type="button" class="btn btn-default opt 
active">Introduction</button>
-  <button type="button" class="btn btn-default opt">Applications</button>
-</div>
-</div>
-
-
-<!-- introduction Topics -->
-<div class="introduction">
-<div class="btn-group opt-group" role="group">
-  <button type="button" class="btn btn-default opt active">Basics</button>
-  <button type="button" class="btn btn-default opt">Neural Networks</button>
-  <button type="button" class="btn btn-default opt">Advanced</button>
-</div>
-</div>
-
-
-<!-- Intermediate Topics
-<div class="intermediate">
-<div class="btn-group opt-group" role="group">
-  <button type="button" class="btn btn-default opt active">Image 
Recognition</button>
-  <button type="button" class="btn btn-default opt">Human Language</button>
-  <button type="button" class="btn btn-default opt">Recommender 
Systems</button>
-  <button type="button" class="btn btn-default opt">Customization</button>
-</div>
-</div>
--->
-
-<!-- Advanced Topics
-<div class="advanced">
-<div class="btn-group opt-group" role="group">
-  <button type="button" class="btn btn-default opt active">Distributed 
Training</button>
-  <button type="button" class="btn btn-default opt">Optimization</button>
-  <button type="button" class="btn btn-default opt">Adversarial 
Networks</button>
-</div>
-</div>
--->
 <!-- END - Main Menu -->
-<hr>
-
+<br>
 <div class="gluon">
-<div class="introduction">
-
-
-<div class="basics">
-
-- [Manipulate data the MXNet way with 
ndarray](http://gluon.mxnet.io/chapter01_crashcourse/ndarray.html)
-
-- [Automatic differentiation with 
autograd](http://gluon.mxnet.io/chapter01_crashcourse/autograd.html)
-
-- [Linear regression with 
gluon](http://gluon.mxnet.io/chapter02_supervised-learning/linear-regression-gluon.html)
-
-- [Serialization - saving, loading and 
checkpointing](http://gluon.mxnet.io/chapter03_deep-neural-networks/serialization.html)
-
-- [Gluon Datasets and 
DataLoaders](http://mxnet.incubator.apache.org/tutorials/gluon/datasets.html)
-
-</div>
-
-
-<div class="neural-networks">
-
-- [Multilayer perceptrons in 
gluon](http://gluon.mxnet.io/chapter03_deep-neural-networks/mlp-gluon.html)
-
-- [Multi-class object detection using CNNs in 
gluon](http://gluon.mxnet.io/chapter04_convolutional-neural-networks/cnn-gluon.html)
-
-- [Advanced RNNs with 
gluon](http://gluon.mxnet.io/chapter05_recurrent-neural-networks/rnns-gluon.html)
-
-</div>
-
-
-<div class="advanced">
-
-- [Plumbing: A look under the hood of 
gluon](http://gluon.mxnet.io/chapter03_deep-neural-networks/plumbing.html)
-
-- [Designing a custom layer with 
gluon](http://gluon.mxnet.io/chapter03_deep-neural-networks/custom-layer.html)
-
-- [Block and Parameter naming](/tutorials/gluon/naming.html)
-
-- [Fast, portable neural networks with Gluon 
HybridBlocks](http://gluon.mxnet.io/chapter07_distributed-learning/hybridize.html)
-
-- [Training on multiple GPUs with 
gluon](http://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-gluon.html)
-
-- [Applying data augmentation](/tutorials/gluon/data_augmentation.html)
-
-</div>
-
-</div> <!--end of introduction-->
-
-
-<div class="applications">
-
-- [Creating custom operators with numpy](/tutorials/gluon/customop.html)
-
-- [Handwritten digit recognition (MNIST)](/tutorials/gluon/mnist.html)
-
-- [Hybrid network example](/tutorials/gluon/hybrid.html)
-
-- [Neural network building blocks with gluon](/tutorials/gluon/gluon.html)
-
-- [Simple autograd example](/tutorials/gluon/autograd.html)
-
-- [Data Augmentation with Masks (for Object 
Segmentation)](/tutorials/python/data_augmentation_with_masks.html)
-
-- [Inference using an ONNX model](/tutorials/onnx/inference_on_onnx_model.html)
-
-- [Fine-tuning an ONNX model on Gluon](/tutorials/onnx/fine_tuning_gluon.html)
-
-</div> <!--end of applications-->
 
+* Getting Started
+    * [60-Minute Gluon Crash Course](http://gluon-crash-course.mxnet.io/) <img 
src="https://upload.wikimedia.org/wikipedia/commons/6/6a/External_link_font_awesome.svg";
 alt="External link" height="15px" style="margin: 0px 0px 3px 3px;"/>
+    * [MNIST Handwritten Digit Classification](/tutorials/gluon/mnist.html)
+* Models
+    * [Linear 
Regression](http://gluon.mxnet.io/chapter02_supervised-learning/linear-regression-gluon.html)
 <img 
src="https://upload.wikimedia.org/wikipedia/commons/6/6a/External_link_font_awesome.svg";
 alt="External link" height="15px" style="margin: 0px 0px 3px 3px;"/>
+    * [MNIST Handwritten Digit Classification](/tutorials/gluon/mnist.html)
+    * [Word-level text generation with RNN, LSTM and 
GRU](http://gluon.mxnet.io/chapter05_recurrent-neural-networks/rnns-gluon.html) 
<img 
src="https://upload.wikimedia.org/wikipedia/commons/6/6a/External_link_font_awesome.svg";
 alt="External link" height="15px" style="margin: 0px 0px 3px 3px;"/>
+    * [Visual Question 
Answering](http://gluon.mxnet.io/chapter08_computer-vision/visual-question-answer.html)
 <img 
src="https://upload.wikimedia.org/wikipedia/commons/6/6a/External_link_font_awesome.svg";
 alt="External link" height="15px" style="margin: 0px 0px 3px 3px;"/>
+* Practitioner Guides
+    * [Multi-GPU 
training](http://gluon.mxnet.io/chapter07_distributed-learning/multiple-gpus-gluon.html)
 <img 
src="https://upload.wikimedia.org/wikipedia/commons/6/6a/External_link_font_awesome.svg";
 alt="External link" height="15px" style="margin: 0px 0px 3px 3px;"/>
+    * [Checkpointing and Model Serialization (a.k.a. saving and 
loading)](http://gluon.mxnet.io/chapter03_deep-neural-networks/serialization.html)
 <img 
src="https://upload.wikimedia.org/wikipedia/commons/6/6a/External_link_font_awesome.svg";
 alt="External link" height="15px" style="margin: 0px 0px 3px 3px;"/>
+    * [Inference using an ONNX 
model](/tutorials/onnx/inference_on_onnx_model.html)
+    * [Fine-tuning an ONNX model on 
Gluon](/tutorials/onnx/fine_tuning_gluon.html)
+* API Guides
+    * Core APIs
+        * NDArray
+            * [NDArray API](/tutorials/gluon/ndarray.html)
+            * [NDArray 
API](http://gluon.mxnet.io/chapter01_crashcourse/ndarray.html) <img 
src="https://upload.wikimedia.org/wikipedia/commons/6/6a/External_link_font_awesome.svg";
 alt="External link" height="15px" style="margin: 0px 0px 3px 3px;"/>
 
 Review comment:
   I don't think we should list two versions for each. We should either merge 
them or pick the better one

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

Reply via email to