GSanchis opened a new issue #10971: Segmentation fault with custom operator
URL: https://github.com/apache/incubator-mxnet/issues/10971
 
 
   ## Description
   Hi all. I've just recently stumbled into a segmentation fault, which I can't 
really explain. Creating a new operator (even the softmax in the example) leads 
to it.
   
   ## Environment info (Required)
   
   ```
   ----------Python Info----------
   Version      : 3.5.2
   Compiler     : GCC 5.4.0 20160609
   Build        : ('default', 'Nov 17 2016 17:05:23')
   Arch         : ('64bit', 'ELF')
   ------------Pip Info-----------
   Version      : 9.0.3
   Directory    : /home/exx/.local/lib/python3.5/site-packages/pip
   ----------MXNet Info-----------
   Version      : 1.2.0
   Directory    : /home/exx/.local/lib/python3.5/site-packages/mxnet
   Commit Hash   : b2ccd34ad2801b6c87c957c28ad718562a4c5b6e
   ----------System Info----------
   Platform     : Linux-4.4.0-92-generic-x86_64-with-Ubuntu-16.04-xenial
   system       : Linux
   node         : tensorflow
   release      : 4.4.0-92-generic
   version      : #115-Ubuntu SMP Thu Aug 10 09:04:33 UTC 2017
   ----------Hardware Info----------
   machine      : x86_64
   processor    : x86_64
   Architecture:          x86_64
   CPU op-mode(s):        32-bit, 64-bit
   Byte Order:            Little Endian
   CPU(s):                32
   On-line CPU(s) list:   0-31
   Thread(s) per core:    2
   Core(s) per socket:    8
   Socket(s):             2
   NUMA node(s):          2
   Vendor ID:             GenuineIntel
   CPU family:            6
   Model:                 79
   Model name:            Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
   Stepping:              1
   CPU MHz:               1268.449
   CPU max MHz:           3000.0000
   CPU min MHz:           1200.0000
   BogoMIPS:              4191.30
   Virtualization:        VT-x
   L1d cache:             32K
   L1i cache:             32K
   L2 cache:              256K
   L3 cache:              20480K
   NUMA node0 CPU(s):     0-7,16-23
   NUMA node1 CPU(s):     8-15,24-31
   Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge 
mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx 
pdpe1gb rdtscp lm 
   constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc 
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 
sdbg fma cx16 xtpr pdcm
    pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx 
f16c rdrand lahf_lm abm 3dnowprefetch epb intel_pt tpr_shadow vnmi flexpriority 
ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm 
rdseed adx smap xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local 
dtherm ida arat pln pts
   ----------Network Test----------
   Setting timeout: 10
   Timing for Conda: https://repo.continuum.io/pkgs/free/, DNS: 0.0764 sec, 
LOAD: 0.0217 sec.
   Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.0028 sec, LOAD: 
0.2659 sec.
   Timing for FashionMNIST: 
https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz,
 DNS: 0.0201 sec, LOAD: 0.3272 sec.
   Timing for Gluon Tutorial(cn): https://zh.gluon.ai, DNS: 0.1216 sec, LOAD: 
0.3743 sec.
   Timing for MXNet: https://github.com/apache/incubator-mxnet, DNS: 0.0022 
sec, LOAD: 0.4305 sec.
   Timing for Gluon Tutorial(en): http://gluon.mxnet.io, DNS: 0.2415 sec, LOAD: 
0.3285 sec.
   ```
   
   I'm using mxnet-cu80 for Python 3.5.
   
   ## Build info (Required if built from source)
   
   Downloaded via `pip install --user mxnet-cu80==1.2.0b20180516`. I was using 
mxnet-cu80-1.0.0, but ran into this same problem, and tried updating.
   
   ## Error Message:
   ```
   Segmentation fault: 11
   
   Stack trace returned 10 entries:
   [bt] (0) 
/home/exx/.local/lib/python3.5/site-packages/mxnet/libmxnet.so(+0x331d6a) 
[0x7f3b7618fd6a]
   [bt] (1) 
/home/exx/.local/lib/python3.5/site-packages/mxnet/libmxnet.so(+0x2968b06) 
[0x7f3b787c6b06]
   [bt] (2) /lib/x86_64-linux-gnu/libc.so.6(+0x354b0) [0x7f3be81064b0]
   [bt] (3) 
/home/exx/.local/lib/python3.5/site-packages/mxnet/libmxnet.so(+0x4b7589) 
[0x7f3b76315589]
   [bt] (4) 
/home/exx/.local/lib/python3.5/site-packages/mxnet/libmxnet.so(+0x4b8655) 
[0x7f3b76316655]
   [bt] (5) 
/home/exx/.local/lib/python3.5/site-packages/mxnet/libmxnet.so(+0x684bf8a) 
[0x7f3b7c6a9f8a]
   [bt] (6) 
/home/exx/.local/lib/python3.5/site-packages/mxnet/libmxnet.so(MXSymbolCreateAtomicSymbol+0x6e1)
 [0x7f3b782e66a1]
   [bt] (7) 
/usr/lib/python3.5/lib-dynload/_ctypes.cpython-35m-x86_64-linux-gnu.so(ffi_call_unix64+0x4c)
 [0x7f3be6ef9e20]
   [bt] (8) 
/usr/lib/python3.5/lib-dynload/_ctypes.cpython-35m-x86_64-linux-gnu.so(ffi_call+0x2eb)
 [0x7f3be6ef988b]
   [bt] (9) 
/usr/lib/python3.5/lib-dynload/_ctypes.cpython-35m-x86_64-linux-gnu.so(_ctypes_callproc+0x49a)
 [0x7f3be6ef401a]
   
   ## Minimum reproducible example
   I believe this is the core of what is leading me to the error:
   ```        user_embed = mx.symbol.Embedding(name="user_embed", data=user,
                                            input_dim=max_users, 
output_dim=embed_size)
           item_embed = mx.symbol.Embedding(name="item_embed", data=item,
                                            input_dim=max_items, 
output_dim=embed_size)
       user = mx.symbol.L2Normalization(user_embed)
       item = mx.symbol.L2Normalization(item_embed)
       dot = user * item
       dot = mx.symbol.sum_axis(dot, axis=1)
       cosine = mx.symbol.Flatten(dot)
       pred = mx.symbol.Custom(data=cosine, label=[score], name='ce', 
op_type='softmax')
   ```
   The `softmax` operator is implemented as in the example (copy-paste).
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

Reply via email to