haojin2 commented on issue #11330: [MXNET-537] add_n(dense, csr, dense) = dense 
and add_n([dense, csr, rsp]*, dense, [dense, csr, rsp]*) = dense on CPU & GPU
URL: https://github.com/apache/incubator-mxnet/pull/11330#issuecomment-398581824
 
 
   Benchmark result for add_n(dense, csr, dense) = dense:
   ([density%] [speedup])
   CPU:
   1.00% 1.1282194997074237
   0.50% 1.1686160529139418
   0.10% 1.1909255730224886
   0.05% 1.1970586102280831
   0.01% 1.202483677804412
   GPU:
   1.00% 1.1627124767202126
   0.50% 1.2392510678426578
   0.10% 1.3169708612264934
   0.05% 1.3275811285384644
   0.01 % 1.3358768672033845
   benchmark script:
   ```python
   import mxnet as mx
   import sys
   import os
   import scipy
   import numpy as np
   from mxnet.test_utils import rand_ndarray, assert_almost_equal
   import time
   
   def measure_cost(repeat, a, b, c, out=None):
       # start bench
       start = time.time()
       results = []
       for i in range(repeat):
           results.append(mx.nd.sparse.add_n(a, b, c, out=out))
       for result in results:
           result.wait_to_read()
       end = time.time()
       diff = end - start
       return diff / repeat
   
   def measure_fallback(repeat, a):
       # start bench
       start = time.time()
       results = []
       for i in range(repeat):
           results.append(a.tostype('default'))
       for result in results:
           result.wait_to_read()
       end = time.time()
       diff = end - start
       return diff / repeat
   
   def main():
       shape = (128, 1000000)
       dns = np.random.uniform(size=shape)
       # context = mx.gpu(0)
       context = mx.cpu()
       mx_dns1 = mx.nd.array(dns, ctx=context)
       mx_dns2 = mx.nd.array(dns, ctx=context)
       for density in [0.01, 0.005, 0.001, 0.0005, 0.0001]:
           mx_csr = rand_ndarray(shape=shape, stype='csr', 
density=density).as_in_context(context)
           mx_csr_dns = mx_csr.tostype('default')
           sparse_cost = 0.0
           dns_cost = 0.0
           mx.nd.waitall()
           #warmup
           check = mx.nd.sparse.add_n(mx_dns1, mx_csr, mx_dns2)
           dns1 = dns + mx_csr_dns.asnumpy() + dns
           assert_almost_equal(check.asnumpy(), dns1, atol=1e-5, rtol=1e-4)
           mx.nd.waitall()
           for i in range(20):
               sparse_cost += measure_cost(5, mx_dns1, mx_csr, mx_dns2)
               dns_cost += measure_cost(5, mx_dns1, mx_csr_dns, mx_dns2)
           print("%.2f %%" % (density*100), dns_cost / sparse_cost)
   
   
   if __name__ == "__main__":
       main()
   ```
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

Reply via email to