This is an automated email from the ASF dual-hosted git repository.

aradzinski pushed a commit to branch NLPCRAFT-513
in repository https://gitbox.apache.org/repos/asf/incubator-nlpcraft-website.git


The following commit(s) were added to refs/heads/NLPCRAFT-513 by this push:
     new a901e7e  WIP
a901e7e is described below

commit a901e7e5206f8ee0d180ed597907d7a8e8cb7a32
Author: Aaron Radzinski <[email protected]>
AuthorDate: Sat Jan 28 11:08:08 2023 -0800

    WIP
---
 _layouts/default.html |   2 +-
 getting-started.html  | 163 --------------
 key-concepts-old.html | 587 --------------------------------------------------
 use-cases.html        |   2 +-
 4 files changed, 2 insertions(+), 752 deletions(-)

diff --git a/_layouts/default.html b/_layouts/default.html
index 620b0b8..cfe9da2 100644
--- a/_layouts/default.html
+++ b/_layouts/default.html
@@ -130,7 +130,7 @@ layout: compress
 <div id="footer">
     <div class="container">
         <div class="text-muted text-center">
-            <span>Copyright &copy; 2021 Apache Software Foundation</span>
+            <span>Copyright &copy; 2023 Apache Software Foundation</span>
             <span>
                 <a target=_new href="https://apache.org";><img alt="asf" 
src="/images/asf_logo-h24.png"></a>
             </span>
diff --git a/getting-started.html b/getting-started.html
deleted file mode 100644
index e88aa3b..0000000
--- a/getting-started.html
+++ /dev/null
@@ -1,163 +0,0 @@
----
-active_crumb: Docs
-layout: documentation
-id: getting_started
----
-
-<!--
- Licensed to the Apache Software Foundation (ASF) under one or more
- contributor license agreements.  See the NOTICE file distributed with
- this work for additional information regarding copyright ownership.
- The ASF licenses this file to You under the Apache License, Version 2.0
- (the "License"); you may not use this file except in compliance with
- the License.  You may obtain a copy of the License at
-
-      http://www.apache.org/licenses/LICENSE-2.0
-
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
--->
-
-<div class="col-md-8 second-column">
-    <section id="getting-started">
-        <h2 class="section-title">Getting Started <a href="#"><i 
class="top-link fas fa-fw fa-angle-double-up"></i></a></h2>
-        <p>
-            Lets review how to run NLPCraft <a 
href="https://github.com/apache/incubator-nlpcraft/tree/master/nlpcraft-examples";
 target="github">examples</a>.
-            We will use an example shipped with NLPCraft along with 
demonstrating the main components of NLPCraft -
-            <a href="/server-and-probe.html#probe">data probe</a>,
-            <a href="/server-and-probe.html#server">REST server</a>, and
-            <a href="/tools/script.html"><code>nlpcraft.{sh|cmd}</code></a> 
script.
-        </p>
-        <p>
-            We assume the following:
-        </p>
-        <ul>
-            <li>
-                You <a href="/download.html#zip">downloaded</a> NLPCraft 
{{site.latest_version}} as <b>binary release</b>.
-                <ul>
-                    <li>
-                        If you downloaded the source release - run <code 
class="script">mvn clean package -P examples</code> to build binaries before 
proceeding.
-                    </li>
-                </ul>
-            </li>
-            <li>You followed <a href="/installation.html">installation</a> 
instructions.</li>
-            <li>You are using MacOS/Linux environment.</li>
-        </ul>
-    </section>
-    <section>
-        <h2 id="probe-server" class="section-sub-title">Data Probe <span 
class="amp">&amp;</span> REST Server <a href="#"><i class="top-link fas fa-fw 
fa-angle-double-up"></i></a></h2>
-        <p>
-            <a href="/server-and-probe.html">Data probes</a> are used to 
deploy and host data model, while <a href="/server-and-probe.html">REST 
server</a> (or a
-            cluster of servers) is used to accept client REST calls and route 
them to the data model deployed on data probes.
-        </p>
-        <p>
-            Data probe and REST server are both Java applications.
-            In this tutorial, we'll use <a 
href="/tools/script.html"><code>nlpcraft.{sh|cmd}</code></a> script that comes 
with NLPCraft
-            to manage them. To start REST server and data probe - run the 
following two commands:
-        </p>
-        <pre class="brush: bash">
-            $ bin/nlpcraft.sh start-server
-            $ bin/nlpcraft.sh start-probe 
--cp=./build/nlpcraft-examples/weather/nlpcraft-example-weather-{{site.latest_version}}.jar
 --mdls=org.apache.nlpcraft.examples.weather.NCWeatherModel
-        </pre>
-        <p>
-            At this point data probe and the REST server are started and 
connected.
-        </p>
-        <h2 id="querying" class="section-sub-title">Using REST API <a 
href="#"><i class="top-link fas fa-fw fa-angle-double-up"></i></a></h2>
-        <p>
-            We will be using NLPCraft CLI script to issue REST calls. Let's 
start NLPCraft CLI in interactive REPL mode
-            by running <a 
href="/tools/script.html"><code>nlpcraft.{sh|cmd}</code></a> script with no 
argument:
-        </p>
-        <pre class="brush: bash">
-            $ bin/nlpcraft.sh
-        </pre>
-        <p>
-            <b>NOTES:</b>
-        </p>
-        <ul>
-            <li>
-                NLPCraft CLI automatically detects the REST server and data 
probe we have started in
-                the previous step. You can see the status of the REST server 
and data probe in the REPL prompt or you can
-                use <code>info</code> command to see a status information.
-            </li>
-            <li>
-                When NLPCraft CLI detects running REST server it automatically 
signs in with the <a href="/using-rest.html#users">default user account</a>
-                to obtain access token that is required for all REST calls. It 
will automatically use this access token
-                while in REPL mode whenever required.
-            </li>
-            <li>
-                Use <span class="keyboard">Tab</span> key anytime for 
auto-completion for commands, parameters,
-                file systems paths, and model class names.
-                Use <span class="keyboard">↑</span> and <span 
class="keyboard">↓</span> keys to scroll
-                through command history.
-            </li>
-        </ul>
-        <p>
-            While in REPL mode lets use <code>ask</code> command to issue REST 
requests to our data model.
-        </p>
-        <div class="accordion" id="questions">
-            <div class="card">
-                <div class="card-header" id="q1">
-                    <h2 class="mb-0">
-                        <button class="btn btn-link btn-block text-left" 
type="button" data-toggle="collapse" data-target="#a1">
-                            <b>Q:</b> What is the current forecast for Chicago?
-                        </button>
-                    </h2>
-                </div>
-                <div id="a1" class="collapse" data-parent="#questions">
-                    <div class="card-body">
-                        <p>
-                            <img class="img-fluid" 
src="/images/getting_started_fig4.png" alt="">
-                        </p>
-                        <p>
-                            <b>A:</b> we get a full 5-day forecast for Chicago.
-                        </p>
-                    </div>
-                </div>
-            </div>
-            <div class="card">
-                <div class="card-header" id="q2">
-                    <h2 class="mb-0">
-                        <button class="btn btn-link btn-block text-left 
collapsed" type="button" data-toggle="collapse" data-target="#a2">
-                            <b>Q:</b> Any chance of snow today in Moscow?
-                        </button>
-                    </h2>
-                </div>
-                <div id="a2" class="collapse" data-parent="#questions">
-                    <div class="card-body">
-                        <p>
-                            <img class="img-fluid" 
src="/images/getting_started_fig5.png" alt="">
-                        </p>
-                        <p>
-                            <b>A:</b> we get today's Moscow weather report.
-                        </p>
-                    </div>
-                </div>
-            </div>
-        </div>
-    </section>
-    <section>
-        <h2 class="section-title">Done! 👌 <a href="#"><i class="top-link fas 
fa-fw fa-angle-double-up"></i></a></h2>
-        <p>
-            Use <code>stop</code> command to stop REST server and the data 
probe and <code>quit</code>
-            command to quit from REPL mode:
-        </p>
-        <p>
-            <img class="img-fluid" src="/images/getting_started_fig6.png" 
alt="">
-        </p>
-    </section>
-</div>
-<div class="col-md-2 third-column">
-    <ul class="side-nav">
-        <li class="side-nav-title">On This Page</li>
-        <li><a href="#getting-started">Getting Started</a></li>
-        <li><a href="#probe-server">Data Probe <span class="amp">&amp;</span> 
Server</a></li>
-        <li><a href="#querying">Using REST API</a></li>
-        {% include quick-links.html %}
-    </ul>
-</div>
-
-
-
diff --git a/key-concepts-old.html b/key-concepts-old.html
deleted file mode 100644
index 7510169..0000000
--- a/key-concepts-old.html
+++ /dev/null
@@ -1,587 +0,0 @@
----
-active_crumb: Docs
-layout: documentation
-id: key_concepts
----
-
-<!--
- Licensed to the Apache Software Foundation (ASF) under one or more
- contributor license agreements.  See the NOTICE file distributed with
- this work for additional information regarding copyright ownership.
- The ASF licenses this file to You under the Apache License, Version 2.0
- (the "License"); you may not use this file except in compliance with
- the License.  You may obtain a copy of the License at
-
-      http://www.apache.org/licenses/LICENSE-2.0
-
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
--->
-
-<div class="col-md-8 second-column" xmlns="http://www.w3.org/1999/html";>
-    <section id="overview">
-        <h2 class="section-title">Key Concepts<a href="#"><i class="top-link 
fas fa-fw fa-angle-double-up"></i></a></h2>
-
-        <p>
-            NLPCraft is based on three main concepts:
-        </p>
-        <ul>
-            <li>
-                {% scaladoc NCModel NCModel %} is a user-configured object 
responsible for input interpretation.
-            </li>
-            <li>
-                {% scaladoc NCPipeline NCPipeline %} is a part of the model 
configuration that defines
-                specifics of the user input processing.
-            </li>
-            <li>
-                {% scaladoc NCModelClient NCModelClient %} is responsible for 
interaction with the data model.
-            </li>
-        </ul>
-
-        <p>Here's the typical code structure when working with NLPCraft:</p>
-
-        <pre class="brush: scala, highlight: []">
-              // Init data model.
-              val mdl = new CustomNlpModel()
-
-              // Creates client for given model.
-              val cli = new NCModelClient(mdl)
-
-              // Sends text request to model by user ID "user01".
-              val result = client.ask("Some user command", "user01")
-        </pre>
-    </section>
-
-    <section id="terminology">
-        <h2 class="section-title">Terminology<a href="#"><i class="top-link 
fas fa-fw fa-angle-double-up"></i></a></h2>
-        <p>
-            Let's start with the nomenclature of the main NLPCraft types:
-        </p>
-
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Type</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-            <tr>
-                <td><b>{% scaladoc NCModel NCModel %}</b></td>
-                <td>
-                    <code>Model</code> is the main component in NLPCraft. 
User-define data model contains its {% scaladoc NCModelConfig NCModelConfig %},
-                    input processing {% scaladoc NCPipeline NCPipeline %} and 
life-cycle callbacks.
-                    NLPCraft employs model-as-a-code approach where entire 
data model is an implementation of just
-                    this interface. The instance of this interface is passed 
to {% scaladoc NCModelClient NCModelClient %} class.
-                    Note that the model-as-a-code approach natively supports 
any software life cycle tools and frameworks
-                    like various build tools, CI/SCM tools, IDEs, etc. You 
don't need any additional tools to manage some
-                    aspects of your data models - your entire model and all of 
its components are part of your project's source code.
-                    Note that in most cases, one would use a convenient {% 
scaladoc NCModelAdapter NCModelAdapter %} adapter to implement this interface.
-                </td>
-            </tr>
-            <tr>
-                <td><b>{% scaladoc NCToken NCToken %}</b></td>
-                <td>
-                    <code>Token</code> is simple string, part of user input, 
which is obtained by splitting user input
-                    according to some rules. For example, the user input 
"<b>Where is it?</b>" contains four tokens:
-                    "<code>Where</code>", "<code>is</code>", 
"<code>it</code>", "<code>?</code>".
-                    Usually <code>tokens</code> are words and punctuation 
symbols which also contain additional
-                    information like point of speech tags, relative position 
in the overall input text, stopword flag,
-                    stem and lemma forms, etc. List of parsed 
<code>tokens</code> serves as an input for parsing <code>entities</code>.
-                </td>
-            </tr>
-            <tr>
-                <td><b>{% scaladoc NCEntity NCEntity %}</b></td>
-                <td>
-                    <code>Entity</code> typically represents a real-world 
object, such as a person, location, organization,
-                    or product that can often be denoted with a proper name. 
It can be abstract or have a physical existence.
-                    Each <code>entity</code> consists of zero or more 
<code>tokens</code>. Combination of entities form one or more parsing
-                    <code>variants</code>.
-                </td>
-            </tr>
-            <tr>
-                <td><b>{% scaladoc NCVariant NCVariant %}</b></td>
-                <td>
-                    <code>Variant</code> is a unique set of 
<code>entities</code>. In many cases, a <code>token</code> or a group
-                    of <code>tokens</code> can be recognized as more than one 
<code>entity</code> - resulting in multiple possible
-                    interpretations of the original sequence of tokens. Each 
such interpretation is defined as a parsing <code>variant</code>.
-                    For example, user input <b>"Look at this crane."</b> can 
be interpreted as two <code>variants</code>,
-                    one of them containing <code>entity</code> 
<b>BIRD<sub>[crane]</sub></b> and another containing <code>entity</code> 
<b>MACHINE<sub>[crane]</sub></b>.
-                    Set of <code>variants</code> ultimately serves as an input 
to <a href="intent-matching.html">intent matching</a>.
-                </td>
-            </tr>
-            <tr>
-                <td><b>{% scaladoc NCPipeline NCPipeline %}</b></td>
-                <td>
-                    <code>Pipeline</code> is the main configuration property 
of the model. Pipeline consists of an ordered sequence
-                    of pipeline components. User input starts at the first 
component of the
-                    pipeline as a simple text and exits the end of the 
pipeline as a one or more parsing <code>variants</code>.
-                    The output of the pipeline is further passed as an input 
to <a href="intent-matching.html">intent matching</a>.
-                </td>
-            </tr>
-            <tr>
-                <td><b>{% scaladoc NCModelCofig NCModelConfig %}</b></td>
-                <td>
-                    <code>Pipeline</code> is the main configuration property 
of the model. Pipeline consists of an ordered sequence
-                    of pipeline components. User input starts at the first 
component of the
-                    pipeline as a simple text and exits the end of the 
pipeline as a one or more parsing <code>variants</code>.
-                    The output of the pipeline is further passed as an input 
to <a href="intent-matching.html">intent matching</a>.
-                </td>
-            </tr>
-            <tr>
-                <td><b><a target="scaladoc" 
href="/apis/latest/">@NCIntent</a></b></td>
-                <td>
-                    <code>Variant</code> is a unique set of 
<code>entities</code>. In many cases, a <code>token</code> or a group
-                    of <code>tokens</code> can be recognized as more than one 
<code>entity</code> - resulting in multiple possible
-                    interpretations of the original sequence of tokens. Each 
such interpretation is defined as a parsing <code>variant</code>.
-                    For example, user input <b>"Look at this crane."</b> can 
be interpreted as two <code>variants</code>,
-                    one of them containing <code>entity</code> 
<b>BIRD<sub>[crane]</sub></b> and another containing <code>entity</code> 
<b>MACHINE<sub>[crane]</sub></b>.
-                </td>
-            </tr>
-
-            </tbody>
-        </table>
-
-        <figure>
-            <img alt="named entities" class="img-fluid" 
src="/images/text-tokens-entities2.png">
-            <figcaption><b>Fig 1.</b> Text -> Tokens -> Entities -> Parsing 
Variants.</figcaption>
-        </figure>
-
-        <p>
-            When <code>Variant</code> is prepared, the suitable  
<code>Intent</code> is trying to matched with it.
-        </p>
-
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Term</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-
-            <tr>
-                <td><code>Intent</code></td>
-                <td>
-                    <code>Intent</code> is user defined callback method and 
rule according to which this callback should be called.
-                    Most often rule is some template based on expected set of 
<code>entities</code> in user input,
-                    but it can be defined more flexible.
-                    Parameters extracted from user text input are passed into 
callback method.
-                    This method execution result is provided to user as answer 
on his request.
-                    <code>Intent</code> callbacks are methods defined in 
<code>Data Model</code> class annotated by
-                    <code>intent</code> rules via <a 
href="intent-matching.html">IDL</a>.
-                </td>
-            </tr>
-            <tr>
-                <td><code>IDL</code></td>
-                <td>
-                    IDL, Intent Definition Language, is a relatively 
straightforward declarative language which
-                    defines a match between the parsed user input represented 
as the collection of tokens,
-                    and the user-define callback method.
-                    IDL intents are bound to their callbacks via Java 
annotation and can be located
-                    in the same Java annotations or placed in model YAML/JSON 
file as well as in external *.idl files.
-                </td>
-            </tr>
-            <tr>
-                <td><code>Callback</code></td>
-                <td>
-                    The user defined Scala method which mapped to the 
<code>intent</code>.
-                    This method receives as its parameters normalized values 
from user input text according to
-                    IDL matched terms.
-                </td>
-            </tr>
-            </tbody>
-        </table>
-
-        <p>
-            So, <code>Data Model</code> must be able to do tree following 
things:
-        </p>
-
-        <ul>
-            <li>
-                Parse user input text as the <code>tokens</code>.
-                They are input for searching <code>named entities</code>.
-                <code>Tokens</code> parsing components should be included into 
<a href="#model-pipeline">Model pipeline</a>.
-            </li>
-            <li>
-                Find <code>named entities</code> based on these parsed 
<code>tokens</code>.
-                They are input for searching <code>intents</code>.
-                <code>Entity</code> parsing components should be included into 
<a href="#model-pipeline">Model pipeline</a>.
-            </li>
-            <li>
-                Prepare <code>intents</code> with their callbacks methods 
which contain business logic.
-                These methods should be defined directly in the model class 
definition or the model should have references on them.
-                It will be described below. Callback can de defined in model 
scala class directly or via references.
-                Look at the chapter <a href="intent-matching.html">Intent 
Matching</a> content for get more details.
-            </li>
-        </ul>
-
-        <p>
-            As example, let's prepare the system which can call persons from 
your contact list.
-            Typical commands are: "<b>Please call to John Smith</b>" or 
"<b>Connect me with Barbara Dillan</b>".
-            For solving this task this model should be able to recognize in 
user text following entities:
-            <code>command</code> and <code>person</code> to apply this command.
-        </p>
-
-        <p>
-            So, when request "<b>Please call to John Smith</b>" received, our 
model should be able to:
-        </p>
-
-        <ul>
-            <li>
-                Parse tokens splitting user text input:
-                "<code>please</code>", "<code>call</code>", "<code>to</code>", 
"<code>john</code>", "<code>smith</code>".
-            </li>
-            <li>
-                Find two named entities:
-                <ul>
-                    <li>
-                        <code>command</code> by token "<code>call</code>".
-                    </li>
-                    <li>
-                        <code>person</code> by tokens "<code>john</code>" and 
"<code>smith</code>".
-                    </li>
-                </ul>
-            </li>
-            <li>
-                Have prepared intent:
-                <pre class="brush: scala, highlight: [1, 2, 5, 6]">
-                    @NCIntent("intent=call term(command)={# == 'command'} 
term(person)={# == 'person'}")
-                    def onCommand(
-                        ctx: NCContext,
-                        im: NCIntentMatch,
-                        @NCIntentTerm("command") command: NCEntity,
-                        @NCIntentTerm("person") person: NCEntity
-                    ): NCResult = ? // Implement business logic here.
-                </pre>
-
-                <ul>
-                    <li>
-                        <code>Line 1</code> defines intent <code>call</code> 
with two conditions
-                        which expects two named entities in user input text.
-                    </li>
-                    <li>
-                        <code>Line 2</code> defines related callback method 
<code>onCommand()</code>.
-                    </li>
-                    <li>
-                        <code>Lines 4 and 5</code> define two callback 
method's arguments which are corresponded to
-                        <code>call</code> intent terms conditions. You can 
extract normalized value
-                        <code>john smith</code> from the <code>person</code> 
parameter and use it in the method body
-                        for getting his phone number etc.
-                    </li>
-                </ul>
-            </li>
-        </ul>
-    </section>
-
-    <section id="model-configuration">
-        <h2 class="section-title">Model Configuration<a href="#"><i 
class="top-link fas fa-fw fa-angle-double-up"></i></a></h2>
-
-        <p>
-            <code>Data Model</code> configuration represented as
-            {% scaladoc NCModelConfig NCModelConfig %}
-            contains set of parameters which are described below.
-        </p>
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Name</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-            <tr>
-                <td><code>id</code>, <code>name</code> and 
<code>version</code></td>
-                <td>
-                    Mandatory model properties.
-                </td>
-            </tr>
-            <tr>
-                <td><code>description</code>, <code>origin</code></td>
-                <td>
-                    Optional model properties.
-                </td>
-            </tr>
-            <tr>
-                <td><code>conversationTimeout</code></td>
-                <td>
-                    Timeout of the user's conversation.
-                    If user doesn't communicate with the model this time 
period STM is going to be cleared.
-                    Loot at <a href="short-term-memory.html">Conversation</a> 
chapter to get more details.
-                    It is the mandatory parameter with default value.
-                </td>
-            </tr>
-            <tr>
-                <td><code>conversationDepth</code></td>
-                <td>
-                    Maximum supported depth the user's conversation.
-                    Loot at <a href="short-term-memory.html">Conversation</a> 
chapter to get more details.
-                    It is the mandatory parameter with default value.
-                </td>
-            </tr>
-            </tbody>
-        </table>
-    </section>
-
-    <section id="model-pipeline">
-        <h2 class="section-title">Model Pipeline<a href="#"><i class="top-link 
fas fa-fw fa-angle-double-up"></i></a></h2>
-
-        <p>
-            Model <code>Pipeline</code> is represented as {% scaladoc 
NCPipeline NCPipeline %} and
-            contains following components:
-        </p>
-
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Component</th>
-                <th>Mandatory</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-            <tr>
-                <td>{% scaladoc NCTokenParser NCTokenParser %}</td>
-                <td>Mandatory single</td>
-                <td>
-                    <code>Token parser</code> should be able to parse user 
input plain text and split this text
-                    into <code>tokens</code> list.
-                    NLPCraft provides two default English language 
implementations of token parser.
-                    Also, project contains examples for <a 
href="examples/light_switch_fr.html">French</a> and
-                    <a href="examples/light_switch_ru.html">Russia</a> 
languages token parser implementations.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCTokenEnricher NCTokenEnricher %}</td>
-                <td>Optional list</td>
-                <td>
-                    <code>Tokens enricher</code> is a component which allow to 
add additional properties for prepared tokens,
-                    like part of speech, quote, stop-words flags or any other.
-                    NLPCraft provides built-in English language set of token 
enrichers implementations.
-                    Here is an <a 
href="custom-components.html#token-enrichers">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCTokenValidator NCTokenValidator %}</td>
-                <td>Optional list</td>
-                <td>
-                    <code>Token validator</code> is a component which allow to 
inspect prepared tokens and
-                    throw an exception to break user input processing.
-                    Here is an <a 
href="custom-components.html#token-validators">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCEntityParser NCEntityParser %}</td>
-                <td>Mandatory list</td>
-                <td>
-                    <code>Entity parser</code> is a component which allow to 
find user defined named entities
-                    based on prepared tokens as input.
-                    NLPCraft provides wrappers for named-entity recognition 
components of
-                    <a href="https://opennlp.apache.org/";>Apache OpenNLP</a> 
and
-                    <a href="https://nlp.stanford.edu/";>Stanford NLP</a> and 
its own implementations.
-                    Note that at least one entity parser must be defined.
-                    Here is an <a 
href="custom-components.html#entity-parsers">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCEntityEnricher NCEntityEnricher %}</td>
-                <td>Optional list</td>
-                <td>
-                    <code>Entity enricher</code> is component which allows to 
add additional properties for prepared entities.
-                    Can be useful for extending existing entity enrichers 
functionality.
-                    Here is an <a 
href="custom-components.html#entity-enrichers">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCEntityMapper NCEntityMapper %}</td>
-                <td>Optional list</td>
-                <td>
-                    <code>Entity mappers</code> is component which allows to 
map one set of entities to another after the entities
-                    were parsed and enriched. Can be useful for building 
complex parsers based on existing.
-                    Here is an <a 
href="custom-components.html#entity-mappers">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCEntityValidator NCEntityValidator %}</td>
-                <td>Optional list</td>
-                <td>
-                    <code>Entity validator</code> is a component which allow 
to inspect prepared entities and
-                    throw an exception to break user input processing.
-                    Here is an <a 
href="custom-components.html#entity-validators">example</a>.
-                </td>
-            </tr>
-            <tr>
-                <td> {% scaladoc NCVariantFilter NCVariantFilter %}</td>
-                <td>Optional single</td>
-                <td>
-                    <code>Variant filter</code> is a component which allows 
filtering detected variants and
-                    rejecting undesirable.
-                    Here is an <a 
href="custom-components.html#variant-filters">example</a>.
-                </td>
-            </tr>
-            </tbody>
-        </table>
-
-        <figure>
-            <img alt="pipeline" class="img-fluid" src="/images/pipeline.png">
-            <figcaption><b>Fig 2.</b> Pipeline</figcaption>
-        </figure>
-
-        <p>
-            Below {% scaladoc NCModel NCModel %} creation example.
-            {% scaladoc NCPipeline NCPipeline %} is prepared using
-            {% scaladoc NCPipelineBuilder NCPipelineBuilder %} class helper.
-        </p>
-
-        <pre class="brush: scala, highlight: []">
-            val pipeline =
-                new NCPipelineBuilder().
-                    withTokenParser(new NCFrTokenParser()).
-                    withTokenEnricher(new NCFrLemmaPosTokenEnricher()).
-                    withTokenEnricher(new NCFrStopWordsTokenEnricher()).
-                    withEntityParser(new 
NCFrSemanticEntityParser("lightswitch_model_fr.yaml")).
-                    build
-            val cfg = NCModelConfig("nlpcraft.lightswitch.fr.ex", "LightSwitch 
Example Model FR", "1.0")
-
-            val mdl = new NCModel(cfg, pipeline):
-                // Add your callbacks definition or references on them here.
-        </pre>
-
-        <p>
-            This flexible system allows to create any pipelines on any 
language.
-            You can collect NLPCraft predefined components, write your own and 
easy reuse custom components.
-        </p>
-    </section>
-
-    <section id="model-behavior">
-        <h2 class="section-title">Model Behavior Overriding<a href="#"><i 
class="top-link fas fa-fw fa-angle-double-up"></i></a></h2>
-
-        <p>
-            There are also several {% scaladoc NCModel NCModel %}
-            callbacks that you can override to affect model behavior during
-            <a href="/intent-matching.html#model_callbacks">intent matching</a>
-            to perform logging, debugging, statistic or usage collection, 
explicit update or initialization of
-            conversation context, security audit or validation:
-        </p>
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Method</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-            <tr>
-                <td>{% scaladoc NCModel#onContext-38d onContext() %}</td>
-                <td>
-                    Overriding this method allows to prepare result before 
intent matching.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModel#onMatchedIntent-946 onMatchedIntent() 
%}</td>
-                <td>
-                    Overriding this method allows to reject matched intent and 
continue matching process.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModel#onResult-fffffaf3 onResult() %}</td>
-                <td>
-                    Overriding this method allows to replace callback method 
execution result.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModel#onRejection-4fa onRejection() %}</td>
-                <td>
-                    Overriding this method allows to change operation result 
when rejection occurs.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModel#onError-fffff759 onError() %}</td>
-                <td>
-                    Overriding this method allows to change operation result 
when any error occurs.
-                </td>
-            </tr>
-            </tbody>
-        </table>
-    </section>
-
-    <section id="client">
-        <h2 class="section-title">Client Responsibility<a href="#"><i 
class="top-link fas fa-fw fa-angle-double-up"></i></a></h2>
-
-        <p>
-            <code>Client</code>  represented as {% scaladoc NCModelClient 
NCModelClient %}
-            is necessary for communication with the <code>Data Model</code>. 
Base client methods  are described below.
-        </p>
-
-        <table class="gradient-table">
-            <thead>
-            <tr>
-                <th>Method</th>
-                <th>Description</th>
-            </tr>
-            </thead>
-            <tbody>
-            <tr>
-                <td>{% scaladoc NCModelClient#ask-fffff9ce ask() %}</td>
-                <td>
-                    Passes user text input to the model and receives back 
execution
-                    {% scaladoc NCResult NCResult %} or
-                    rejection exception if there isn't any triggered intents.
-                    {% scaladoc NCResult NCResult %} is wrapper on
-                    callback method execution result with additional 
information.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModelClient#debugAsk-fffff96c debugAsk() 
%}</td>
-                <td>
-                    Passes user text input to the model and receives back 
callback and its parameters or
-                    rejection exception if there isn't any triggered intents.
-                    Main difference from <code>ask</code> that triggered 
intent callback method is not called.
-                    This method and this parameter can be useful in tests 
scenarios.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModelClient#clearStm-571 clearStm() %}</td>
-                <td>
-                    Clears STM state. Memory is cleared wholly or with some 
predicate.
-                    Loot at <a href="short-term-memory.html">Conversation</a> 
chapter to get more details.
-                    Second variant of given method with another parameters is 
here - {% scaladoc NCModelClient#clearStm-1d8 clearStm() %}.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModelClient#clearDialog-571 clearDialog() 
%}</td>
-                <td>
-                    Clears dialog state. Dialog is cleared wholly or with some 
predicate.
-                    Loot at <a href="short-term-memory.html">Conversation</a> 
chapter to get more details.
-                    Second variant of given method with another parameters is 
here - {% scaladoc NCModelClient#clearDialog-1d8 clearDialog() %}.
-                </td>
-            </tr>
-            <tr>
-                <td>{% scaladoc NCModelClient#close-94c close() %}</td>
-                <td>
-                    Closes client. You can't call another client's methods 
after this method was closed.
-                </td>
-            </tr>
-            </tbody>
-        </table>
-    </section>
-</div>
-<div class="col-md-2 third-column">
-    <ul class="side-nav">
-        <li class="side-nav-title">On This Page</li>
-        <li><a href="#overview">Key Concepts</a></li>
-        <li><a href="#terminology">Terminology</a></li>
-<!--         <li><a href="#model-configuration">Model Configuration</a></li> 
-->
-<!--         <li><a href="#model-pipeline">Model Pipeline</a></li> -->
-<!--         <li><a href="#model-behavior">Model Behavior Overriding</a></li> 
-->
-<!--         <li><a href="#client">Client Responsibility</a></li> -->
-        {% include quick-links.html %}
-    </ul>
-</div>
-
-
-
-
diff --git a/use-cases.html b/use-cases.html
index da34d34..3f51023 100644
--- a/use-cases.html
+++ b/use-cases.html
@@ -30,7 +30,7 @@ layout: interior
             <li class="side-nav-title">Documentation</li>
             <li><a href="/docs.html">Overview</a></li>
             <li><a href="/installation.html">Installation</a></li>
-            <li><a href="/getting-started.html">Getting Started</a></li>
+            <li><a href="/first-example.html">First Example</a></li>
         </ul>
     </div>
     <div class="col-md-8 second-column">


Reply via email to