Repository: spark
Updated Branches:
  refs/heads/master 860ea0d38 -> 88a3fdcc7


[SPARK-10280][MLLIB][PYSPARK][DOCS] Add @since annotation to 
pyspark.ml.classification

Author: Yu ISHIKAWA <yuu.ishik...@gmail.com>

Closes #8690 from yu-iskw/SPARK-10280.


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/88a3fdcc
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/88a3fdcc
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/88a3fdcc

Branch: refs/heads/master
Commit: 88a3fdcc783f880a8d01c7e194ec42fc114bdf8a
Parents: 860ea0d
Author: Yu ISHIKAWA <yuu.ishik...@gmail.com>
Authored: Mon Nov 9 13:16:04 2015 -0800
Committer: Xiangrui Meng <m...@databricks.com>
Committed: Mon Nov 9 13:16:04 2015 -0800

----------------------------------------------------------------------
 python/pyspark/ml/classification.py | 56 ++++++++++++++++++++++++++++++++
 1 file changed, 56 insertions(+)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/88a3fdcc/python/pyspark/ml/classification.py
----------------------------------------------------------------------
diff --git a/python/pyspark/ml/classification.py 
b/python/pyspark/ml/classification.py
index 2e468f6..603f2c7 100644
--- a/python/pyspark/ml/classification.py
+++ b/python/pyspark/ml/classification.py
@@ -67,6 +67,8 @@ class LogisticRegression(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredicti
     Traceback (most recent call last):
         ...
     TypeError: Method setParams forces keyword arguments.
+
+    .. versionadded:: 1.3.0
     """
 
     # a placeholder to make it appear in the generated doc
@@ -99,6 +101,7 @@ class LogisticRegression(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredicti
         self._checkThresholdConsistency()
 
     @keyword_only
+    @since("1.3.0")
     def setParams(self, featuresCol="features", labelCol="label", 
predictionCol="prediction",
                   maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, 
fitIntercept=True,
                   threshold=0.5, thresholds=None, probabilityCol="probability",
@@ -119,6 +122,7 @@ class LogisticRegression(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredicti
     def _create_model(self, java_model):
         return LogisticRegressionModel(java_model)
 
+    @since("1.4.0")
     def setThreshold(self, value):
         """
         Sets the value of :py:attr:`threshold`.
@@ -129,6 +133,7 @@ class LogisticRegression(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredicti
             del self._paramMap[self.thresholds]
         return self
 
+    @since("1.4.0")
     def getThreshold(self):
         """
         Gets the value of threshold or its default value.
@@ -144,6 +149,7 @@ class LogisticRegression(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredicti
         else:
             return self.getOrDefault(self.threshold)
 
+    @since("1.5.0")
     def setThresholds(self, value):
         """
         Sets the value of :py:attr:`thresholds`.
@@ -154,6 +160,7 @@ class LogisticRegression(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredicti
             del self._paramMap[self.threshold]
         return self
 
+    @since("1.5.0")
     def getThresholds(self):
         """
         If :py:attr:`thresholds` is set, return its value.
@@ -185,9 +192,12 @@ class LogisticRegression(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredicti
 class LogisticRegressionModel(JavaModel):
     """
     Model fitted by LogisticRegression.
+
+    .. versionadded:: 1.3.0
     """
 
     @property
+    @since("1.4.0")
     def weights(self):
         """
         Model weights.
@@ -205,6 +215,7 @@ class LogisticRegressionModel(JavaModel):
         return self._call_java("coefficients")
 
     @property
+    @since("1.4.0")
     def intercept(self):
         """
         Model intercept.
@@ -215,6 +226,8 @@ class LogisticRegressionModel(JavaModel):
 class TreeClassifierParams(object):
     """
     Private class to track supported impurity measures.
+
+    .. versionadded:: 1.4.0
     """
     supportedImpurities = ["entropy", "gini"]
 
@@ -231,6 +244,7 @@ class TreeClassifierParams(object):
                               "gain calculation (case-insensitive). Supported 
options: " +
                               ", ".join(self.supportedImpurities))
 
+    @since("1.6.0")
     def setImpurity(self, value):
         """
         Sets the value of :py:attr:`impurity`.
@@ -238,6 +252,7 @@ class TreeClassifierParams(object):
         self._paramMap[self.impurity] = value
         return self
 
+    @since("1.6.0")
     def getImpurity(self):
         """
         Gets the value of impurity or its default value.
@@ -248,6 +263,8 @@ class TreeClassifierParams(object):
 class GBTParams(TreeEnsembleParams):
     """
     Private class to track supported GBT params.
+
+    .. versionadded:: 1.4.0
     """
     supportedLossTypes = ["logistic"]
 
@@ -287,6 +304,8 @@ class DecisionTreeClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPred
     >>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], 
["features"])
     >>> model.transform(test1).head().prediction
     1.0
+
+    .. versionadded:: 1.4.0
     """
 
     @keyword_only
@@ -310,6 +329,7 @@ class DecisionTreeClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPred
         self.setParams(**kwargs)
 
     @keyword_only
+    @since("1.4.0")
     def setParams(self, featuresCol="features", labelCol="label", 
predictionCol="prediction",
                   probabilityCol="probability", 
rawPredictionCol="rawPrediction",
                   maxDepth=5, maxBins=32, minInstancesPerNode=1, 
minInfoGain=0.0,
@@ -333,6 +353,8 @@ class DecisionTreeClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPred
 class DecisionTreeClassificationModel(DecisionTreeModel):
     """
     Model fitted by DecisionTreeClassifier.
+
+    .. versionadded:: 1.4.0
     """
 
 
@@ -371,6 +393,8 @@ class RandomForestClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPred
     >>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], 
["features"])
     >>> model.transform(test1).head().prediction
     1.0
+
+    .. versionadded:: 1.4.0
     """
 
     @keyword_only
@@ -396,6 +420,7 @@ class RandomForestClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPred
         self.setParams(**kwargs)
 
     @keyword_only
+    @since("1.4.0")
     def setParams(self, featuresCol="features", labelCol="label", 
predictionCol="prediction",
                   probabilityCol="probability", 
rawPredictionCol="rawPrediction",
                   maxDepth=5, maxBins=32, minInstancesPerNode=1, 
minInfoGain=0.0,
@@ -419,6 +444,8 @@ class RandomForestClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPred
 class RandomForestClassificationModel(TreeEnsembleModels):
     """
     Model fitted by RandomForestClassifier.
+
+    .. versionadded:: 1.4.0
     """
 
 
@@ -450,6 +477,8 @@ class GBTClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol
     >>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], 
["features"])
     >>> model.transform(test1).head().prediction
     1.0
+
+    .. versionadded:: 1.4.0
     """
 
     # a placeholder to make it appear in the generated doc
@@ -482,6 +511,7 @@ class GBTClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol
         self.setParams(**kwargs)
 
     @keyword_only
+    @since("1.4.0")
     def setParams(self, featuresCol="features", labelCol="label", 
predictionCol="prediction",
                   maxDepth=5, maxBins=32, minInstancesPerNode=1, 
minInfoGain=0.0,
                   maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
@@ -499,6 +529,7 @@ class GBTClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol
     def _create_model(self, java_model):
         return GBTClassificationModel(java_model)
 
+    @since("1.4.0")
     def setLossType(self, value):
         """
         Sets the value of :py:attr:`lossType`.
@@ -506,6 +537,7 @@ class GBTClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol
         self._paramMap[self.lossType] = value
         return self
 
+    @since("1.4.0")
     def getLossType(self):
         """
         Gets the value of lossType or its default value.
@@ -516,6 +548,8 @@ class GBTClassifier(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol
 class GBTClassificationModel(TreeEnsembleModels):
     """
     Model fitted by GBTClassifier.
+
+    .. versionadded:: 1.4.0
     """
 
 
@@ -555,6 +589,8 @@ class NaiveBayes(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol, H
     >>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], 
[1.0]))]).toDF()
     >>> model.transform(test1).head().prediction
     1.0
+
+    .. versionadded:: 1.5.0
     """
 
     # a placeholder to make it appear in the generated doc
@@ -587,6 +623,7 @@ class NaiveBayes(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol, H
         self.setParams(**kwargs)
 
     @keyword_only
+    @since("1.5.0")
     def setParams(self, featuresCol="features", labelCol="label", 
predictionCol="prediction",
                   probabilityCol="probability", 
rawPredictionCol="rawPrediction", smoothing=1.0,
                   modelType="multinomial"):
@@ -602,6 +639,7 @@ class NaiveBayes(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol, H
     def _create_model(self, java_model):
         return NaiveBayesModel(java_model)
 
+    @since("1.5.0")
     def setSmoothing(self, value):
         """
         Sets the value of :py:attr:`smoothing`.
@@ -609,12 +647,14 @@ class NaiveBayes(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol, H
         self._paramMap[self.smoothing] = value
         return self
 
+    @since("1.5.0")
     def getSmoothing(self):
         """
         Gets the value of smoothing or its default value.
         """
         return self.getOrDefault(self.smoothing)
 
+    @since("1.5.0")
     def setModelType(self, value):
         """
         Sets the value of :py:attr:`modelType`.
@@ -622,6 +662,7 @@ class NaiveBayes(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol, H
         self._paramMap[self.modelType] = value
         return self
 
+    @since("1.5.0")
     def getModelType(self):
         """
         Gets the value of modelType or its default value.
@@ -632,9 +673,12 @@ class NaiveBayes(JavaEstimator, HasFeaturesCol, 
HasLabelCol, HasPredictionCol, H
 class NaiveBayesModel(JavaModel):
     """
     Model fitted by NaiveBayes.
+
+    .. versionadded:: 1.5.0
     """
 
     @property
+    @since("1.5.0")
     def pi(self):
         """
         log of class priors.
@@ -642,6 +686,7 @@ class NaiveBayesModel(JavaModel):
         return self._call_java("pi")
 
     @property
+    @since("1.5.0")
     def theta(self):
         """
         log of class conditional probabilities.
@@ -681,6 +726,8 @@ class MultilayerPerceptronClassifier(JavaEstimator, 
HasFeaturesCol, HasLabelCol,
     |[0.0,0.0]|       0.0|
     +---------+----------+
     ...
+
+    .. versionadded:: 1.6.0
     """
 
     # a placeholder to make it appear in the generated doc
@@ -715,6 +762,7 @@ class MultilayerPerceptronClassifier(JavaEstimator, 
HasFeaturesCol, HasLabelCol,
         self.setParams(**kwargs)
 
     @keyword_only
+    @since("1.6.0")
     def setParams(self, featuresCol="features", labelCol="label", 
predictionCol="prediction",
                   maxIter=100, tol=1e-4, seed=None, layers=None, 
blockSize=128):
         """
@@ -731,6 +779,7 @@ class MultilayerPerceptronClassifier(JavaEstimator, 
HasFeaturesCol, HasLabelCol,
     def _create_model(self, java_model):
         return MultilayerPerceptronClassificationModel(java_model)
 
+    @since("1.6.0")
     def setLayers(self, value):
         """
         Sets the value of :py:attr:`layers`.
@@ -738,12 +787,14 @@ class MultilayerPerceptronClassifier(JavaEstimator, 
HasFeaturesCol, HasLabelCol,
         self._paramMap[self.layers] = value
         return self
 
+    @since("1.6.0")
     def getLayers(self):
         """
         Gets the value of layers or its default value.
         """
         return self.getOrDefault(self.layers)
 
+    @since("1.6.0")
     def setBlockSize(self, value):
         """
         Sets the value of :py:attr:`blockSize`.
@@ -751,6 +802,7 @@ class MultilayerPerceptronClassifier(JavaEstimator, 
HasFeaturesCol, HasLabelCol,
         self._paramMap[self.blockSize] = value
         return self
 
+    @since("1.6.0")
     def getBlockSize(self):
         """
         Gets the value of blockSize or its default value.
@@ -761,9 +813,12 @@ class MultilayerPerceptronClassifier(JavaEstimator, 
HasFeaturesCol, HasLabelCol,
 class MultilayerPerceptronClassificationModel(JavaModel):
     """
     Model fitted by MultilayerPerceptronClassifier.
+
+    .. versionadded:: 1.6.0
     """
 
     @property
+    @since("1.6.0")
     def layers(self):
         """
         array of layer sizes including input and output layers.
@@ -771,6 +826,7 @@ class MultilayerPerceptronClassificationModel(JavaModel):
         return self._call_java("javaLayers")
 
     @property
+    @since("1.6.0")
     def weights(self):
         """
         vector of initial weights for the model that consists of the weights 
of layers.


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org
For additional commands, e-mail: commits-h...@spark.apache.org

Reply via email to