Repository: spark Updated Branches: refs/heads/master f31a62d1b -> 8c62edb70
[SPARK-14299][EXAMPLES] Remove duplications for scala.examples.ml ## What changes were proposed in this pull request? https://issues.apache.org/jira/browse/SPARK-14299 Delete duplications in scala/examples/ml. TrainValidationSplitExample.scala --> ModelSelectionViaTrainValidationSplitExample CrossValidatorExample.scala --> ModelSelectionViaCrossValidationExample ## How was this patch tested? Existing tests passed. (If this patch involves UI changes, please attach a screenshot; otherwise, remove this) Author: Xusen Yin <yinxu...@gmail.com> Closes #12366 from yinxusen/SPARK-14299-2. Project: http://git-wip-us.apache.org/repos/asf/spark/repo Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/8c62edb7 Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/8c62edb7 Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/8c62edb7 Branch: refs/heads/master Commit: 8c62edb70fdeedf0ca5a7fc154698aea96184cc6 Parents: f31a62d Author: Xusen Yin <yinxu...@gmail.com> Authored: Mon Apr 18 13:34:36 2016 -0700 Committer: Xiangrui Meng <m...@databricks.com> Committed: Mon Apr 18 13:34:36 2016 -0700 ---------------------------------------------------------------------- .../examples/ml/CrossValidatorExample.scala | 114 ------------------- ...odelSelectionViaCrossValidationExample.scala | 9 ++ ...electionViaTrainValidationSplitExample.scala | 8 ++ .../ml/TrainValidationSplitExample.scala | 78 ------------- 4 files changed, 17 insertions(+), 192 deletions(-) ---------------------------------------------------------------------- http://git-wip-us.apache.org/repos/asf/spark/blob/8c62edb7/examples/src/main/scala/org/apache/spark/examples/ml/CrossValidatorExample.scala ---------------------------------------------------------------------- diff --git a/examples/src/main/scala/org/apache/spark/examples/ml/CrossValidatorExample.scala b/examples/src/main/scala/org/apache/spark/examples/ml/CrossValidatorExample.scala deleted file mode 100644 index bca301d..0000000 --- a/examples/src/main/scala/org/apache/spark/examples/ml/CrossValidatorExample.scala +++ /dev/null @@ -1,114 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -// scalastyle:off println -package org.apache.spark.examples.ml - -import org.apache.spark.{SparkConf, SparkContext} -import org.apache.spark.ml.Pipeline -import org.apache.spark.ml.classification.LogisticRegression -import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator -import org.apache.spark.ml.feature.{HashingTF, Tokenizer} -import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder} -import org.apache.spark.mllib.linalg.Vector -import org.apache.spark.sql.{Row, SQLContext} - -/** - * A simple example demonstrating model selection using CrossValidator. - * This example also demonstrates how Pipelines are Estimators. - * - * This example uses the [[LabeledDocument]] and [[Document]] case classes from - * [[SimpleTextClassificationPipeline]]. - * - * Run with - * {{{ - * bin/run-example ml.CrossValidatorExample - * }}} - */ -object CrossValidatorExample { - - def main(args: Array[String]) { - val conf = new SparkConf().setAppName("CrossValidatorExample") - val sc = new SparkContext(conf) - val sqlContext = new SQLContext(sc) - import sqlContext.implicits._ - - // Prepare training documents, which are labeled. - val training = sc.parallelize(Seq( - LabeledDocument(0L, "a b c d e spark", 1.0), - LabeledDocument(1L, "b d", 0.0), - LabeledDocument(2L, "spark f g h", 1.0), - LabeledDocument(3L, "hadoop mapreduce", 0.0), - LabeledDocument(4L, "b spark who", 1.0), - LabeledDocument(5L, "g d a y", 0.0), - LabeledDocument(6L, "spark fly", 1.0), - LabeledDocument(7L, "was mapreduce", 0.0), - LabeledDocument(8L, "e spark program", 1.0), - LabeledDocument(9L, "a e c l", 0.0), - LabeledDocument(10L, "spark compile", 1.0), - LabeledDocument(11L, "hadoop software", 0.0))) - - // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. - val tokenizer = new Tokenizer() - .setInputCol("text") - .setOutputCol("words") - val hashingTF = new HashingTF() - .setInputCol(tokenizer.getOutputCol) - .setOutputCol("features") - val lr = new LogisticRegression() - .setMaxIter(10) - val pipeline = new Pipeline() - .setStages(Array(tokenizer, hashingTF, lr)) - - // We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance. - // This will allow us to jointly choose parameters for all Pipeline stages. - // A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator. - val crossval = new CrossValidator() - .setEstimator(pipeline) - .setEvaluator(new BinaryClassificationEvaluator) - // We use a ParamGridBuilder to construct a grid of parameters to search over. - // With 3 values for hashingTF.numFeatures and 2 values for lr.regParam, - // this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from. - val paramGrid = new ParamGridBuilder() - .addGrid(hashingTF.numFeatures, Array(10, 100, 1000)) - .addGrid(lr.regParam, Array(0.1, 0.01)) - .build() - crossval.setEstimatorParamMaps(paramGrid) - crossval.setNumFolds(2) // Use 3+ in practice - - // Run cross-validation, and choose the best set of parameters. - val cvModel = crossval.fit(training.toDF()) - - // Prepare test documents, which are unlabeled. - val test = sc.parallelize(Seq( - Document(4L, "spark i j k"), - Document(5L, "l m n"), - Document(6L, "mapreduce spark"), - Document(7L, "apache hadoop"))) - - // Make predictions on test documents. cvModel uses the best model found (lrModel). - cvModel.transform(test.toDF()) - .select("id", "text", "probability", "prediction") - .collect() - .foreach { case Row(id: Long, text: String, prob: Vector, prediction: Double) => - println(s"($id, $text) --> prob=$prob, prediction=$prediction") - } - - sc.stop() - } -} -// scalastyle:on println http://git-wip-us.apache.org/repos/asf/spark/blob/8c62edb7/examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaCrossValidationExample.scala ---------------------------------------------------------------------- diff --git a/examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaCrossValidationExample.scala b/examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaCrossValidationExample.scala index 0331d6e..d1441b5 100644 --- a/examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaCrossValidationExample.scala +++ b/examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaCrossValidationExample.scala @@ -30,6 +30,15 @@ import org.apache.spark.sql.Row // $example off$ import org.apache.spark.sql.SQLContext +/** + * A simple example demonstrating model selection using CrossValidator. + * This example also demonstrates how Pipelines are Estimators. + * + * Run with + * {{{ + * bin/run-example ml.ModelSelectionViaCrossValidationExample + * }}} + */ object ModelSelectionViaCrossValidationExample { def main(args: Array[String]): Unit = { http://git-wip-us.apache.org/repos/asf/spark/blob/8c62edb7/examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaTrainValidationSplitExample.scala ---------------------------------------------------------------------- diff --git a/examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaTrainValidationSplitExample.scala b/examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaTrainValidationSplitExample.scala index 5a95344..fcad17a 100644 --- a/examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaTrainValidationSplitExample.scala +++ b/examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaTrainValidationSplitExample.scala @@ -25,6 +25,14 @@ import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit} // $example off$ import org.apache.spark.sql.SQLContext +/** + * A simple example demonstrating model selection using TrainValidationSplit. + * + * Run with + * {{{ + * bin/run-example ml.ModelSelectionViaTrainValidationSplitExample + * }}} + */ object ModelSelectionViaTrainValidationSplitExample { def main(args: Array[String]): Unit = { http://git-wip-us.apache.org/repos/asf/spark/blob/8c62edb7/examples/src/main/scala/org/apache/spark/examples/ml/TrainValidationSplitExample.scala ---------------------------------------------------------------------- diff --git a/examples/src/main/scala/org/apache/spark/examples/ml/TrainValidationSplitExample.scala b/examples/src/main/scala/org/apache/spark/examples/ml/TrainValidationSplitExample.scala deleted file mode 100644 index fbba17e..0000000 --- a/examples/src/main/scala/org/apache/spark/examples/ml/TrainValidationSplitExample.scala +++ /dev/null @@ -1,78 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.examples.ml - -import org.apache.spark.{SparkConf, SparkContext} -import org.apache.spark.ml.evaluation.RegressionEvaluator -import org.apache.spark.ml.regression.LinearRegression -import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit} -import org.apache.spark.sql.SQLContext - -/** - * A simple example demonstrating model selection using TrainValidationSplit. - * - * The example is based on [[SimpleParamsExample]] using linear regression. - * Run with - * {{{ - * bin/run-example ml.TrainValidationSplitExample - * }}} - */ -object TrainValidationSplitExample { - - def main(args: Array[String]): Unit = { - val conf = new SparkConf().setAppName("TrainValidationSplitExample") - val sc = new SparkContext(conf) - val sqlContext = new SQLContext(sc) - - // Prepare training and test data. - val data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") - val Array(training, test) = data.randomSplit(Array(0.9, 0.1), seed = 12345) - - val lr = new LinearRegression() - - // We use a ParamGridBuilder to construct a grid of parameters to search over. - // TrainValidationSplit will try all combinations of values and determine best model using - // the evaluator. - val paramGrid = new ParamGridBuilder() - .addGrid(lr.regParam, Array(0.1, 0.01)) - .addGrid(lr.fitIntercept, Array(true, false)) - .addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0)) - .build() - - // In this case the estimator is simply the linear regression. - // A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator. - val trainValidationSplit = new TrainValidationSplit() - .setEstimator(lr) - .setEvaluator(new RegressionEvaluator) - .setEstimatorParamMaps(paramGrid) - - // 80% of the data will be used for training and the remaining 20% for validation. - trainValidationSplit.setTrainRatio(0.8) - - // Run train validation split, and choose the best set of parameters. - val model = trainValidationSplit.fit(training) - - // Make predictions on test data. model is the model with combination of parameters - // that performed best. - model.transform(test) - .select("features", "label", "prediction") - .show() - - sc.stop() - } -} --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org For additional commands, e-mail: commits-h...@spark.apache.org