Repository: spark Updated Branches: refs/heads/master 4987f39ac -> b1bc5ebdd
[DOC][MINOR] ml.feature Scala and Python API sync ## What changes were proposed in this pull request? I reviewed Scala and Python APIs for ml.feature and corrected discrepancies. ## How was this patch tested? Built docs locally, ran style checks Author: Bryan Cutler <cutl...@gmail.com> Closes #13159 from BryanCutler/ml.feature-api-sync. Project: http://git-wip-us.apache.org/repos/asf/spark/repo Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/b1bc5ebd Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/b1bc5ebd Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/b1bc5ebd Branch: refs/heads/master Commit: b1bc5ebdd52ed12aea3fdc7b8f2fa2d00ea09c6b Parents: 4987f39 Author: Bryan Cutler <cutl...@gmail.com> Authored: Thu May 19 04:48:36 2016 +0200 Committer: Nick Pentreath <ni...@za.ibm.com> Committed: Thu May 19 04:48:36 2016 +0200 ---------------------------------------------------------------------- .../scala/org/apache/spark/ml/feature/IDF.scala | 4 +- .../scala/org/apache/spark/ml/feature/PCA.scala | 5 ++- .../org/apache/spark/ml/feature/RFormula.scala | 4 +- .../apache/spark/ml/feature/VectorIndexer.scala | 3 +- python/pyspark/ml/feature.py | 39 +++++++++++++------- 5 files changed, 36 insertions(+), 19 deletions(-) ---------------------------------------------------------------------- http://git-wip-us.apache.org/repos/asf/spark/blob/b1bc5ebd/mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala ---------------------------------------------------------------------- diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala index f85f4c6..08beda6 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala @@ -38,12 +38,12 @@ import org.apache.spark.sql.types.StructType private[feature] trait IDFBase extends Params with HasInputCol with HasOutputCol { /** - * The minimum of documents in which a term should appear. + * The minimum number of documents in which a term should appear. * Default: 0 * @group param */ final val minDocFreq = new IntParam( - this, "minDocFreq", "minimum of documents in which a term should appear for filtering") + this, "minDocFreq", "minimum number of documents in which a term should appear for filtering") setDefault(minDocFreq -> 0) http://git-wip-us.apache.org/repos/asf/spark/blob/b1bc5ebd/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala ---------------------------------------------------------------------- diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala index 141d3b9..dbbaa5a 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala @@ -53,7 +53,8 @@ private[feature] trait PCAParams extends Params with HasInputCol with HasOutputC /** * :: Experimental :: - * PCA trains a model to project vectors to a low-dimensional space using PCA. + * PCA trains a model to project vectors to a lower dimensional space of the top [[PCA!.k]] + * principal components. */ @Experimental class PCA (override val uid: String) extends Estimator[PCAModel] with PCAParams @@ -106,7 +107,7 @@ object PCA extends DefaultParamsReadable[PCA] { /** * :: Experimental :: - * Model fitted by [[PCA]]. + * Model fitted by [[PCA]]. Transforms vectors to a lower dimensional space. * * @param pc A principal components Matrix. Each column is one principal component. * @param explainedVariance A vector of proportions of variance explained by http://git-wip-us.apache.org/repos/asf/spark/blob/b1bc5ebd/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala ---------------------------------------------------------------------- diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala index c0feaa0..2916b6d 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala @@ -194,7 +194,9 @@ object RFormula extends DefaultParamsReadable[RFormula] { /** * :: Experimental :: - * A fitted RFormula. Fitting is required to determine the factor levels of formula terms. + * Model fitted by [[RFormula]]. Fitting is required to determine the factor levels of + * formula terms. + * * @param resolvedFormula the fitted R formula. * @param pipelineModel the fitted feature model, including factor to index mappings. */ http://git-wip-us.apache.org/repos/asf/spark/blob/b1bc5ebd/mllib/src/main/scala/org/apache/spark/ml/feature/VectorIndexer.scala ---------------------------------------------------------------------- diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/VectorIndexer.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/VectorIndexer.scala index 2bc9d22..d814528 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/VectorIndexer.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/VectorIndexer.scala @@ -240,7 +240,8 @@ object VectorIndexer extends DefaultParamsReadable[VectorIndexer] { /** * :: Experimental :: - * Transform categorical features to use 0-based indices instead of their original values. + * Model fitted by [[VectorIndexer]]. Transform categorical features to use 0-based indices + * instead of their original values. * - Categorical features are mapped to indices. * - Continuous features (columns) are left unchanged. * This also appends metadata to the output column, marking features as Numeric (continuous), http://git-wip-us.apache.org/repos/asf/spark/blob/b1bc5ebd/python/pyspark/ml/feature.py ---------------------------------------------------------------------- diff --git a/python/pyspark/ml/feature.py b/python/pyspark/ml/feature.py index 983b6a5..497f2ad 100755 --- a/python/pyspark/ml/feature.py +++ b/python/pyspark/ml/feature.py @@ -352,7 +352,7 @@ class CountVectorizerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental - Model fitted by CountVectorizer. + Model fitted by :py:class:`CountVectorizer`. .. versionadded:: 1.6.0 """ @@ -609,7 +609,7 @@ class IDF(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritab """ minDocFreq = Param(Params._dummy(), "minDocFreq", - "minimum of documents in which a term should appear for filtering", + "minimum number of documents in which a term should appear for filtering", typeConverter=TypeConverters.toInt) @keyword_only @@ -655,7 +655,7 @@ class IDFModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental - Model fitted by IDF. + Model fitted by :py:class:`IDF`. .. versionadded:: 1.4.0 """ @@ -1302,7 +1302,8 @@ class RegexTokenizer(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, minTokenLength = Param(Params._dummy(), "minTokenLength", "minimum token length (>= 0)", typeConverter=TypeConverters.toInt) - gaps = Param(Params._dummy(), "gaps", "whether regex splits on gaps (True) or matches tokens") + gaps = Param(Params._dummy(), "gaps", "whether regex splits on gaps (True) or matches tokens " + + "(False)") pattern = Param(Params._dummy(), "pattern", "regex pattern (Java dialect) used for tokenizing", typeConverter=TypeConverters.toString) toLowercase = Param(Params._dummy(), "toLowercase", "whether to convert all characters to " + @@ -1549,7 +1550,7 @@ class StandardScalerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental - Model fitted by StandardScaler. + Model fitted by :py:class:`StandardScaler`. .. versionadded:: 1.4.0 """ @@ -1641,7 +1642,7 @@ class StringIndexerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental - Model fitted by StringIndexer. + Model fitted by :py:class:`StringIndexer`. .. versionadded:: 1.4.0 """ @@ -1907,7 +1908,7 @@ class VectorIndexer(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, Ja """ .. note:: Experimental - Class for indexing categorical feature columns in a dataset of [[Vector]]. + Class for indexing categorical feature columns in a dataset of `Vector`. This has 2 usage modes: - Automatically identify categorical features (default behavior) @@ -2023,7 +2024,17 @@ class VectorIndexerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental - Model fitted by VectorIndexer. + Model fitted by :py:class:`VectorIndexer`. + + Transform categorical features to use 0-based indices instead of their original values. + - Categorical features are mapped to indices. + - Continuous features (columns) are left unchanged. + + This also appends metadata to the output column, marking features as Numeric (continuous), + Nominal (categorical), or Binary (either continuous or categorical). + Non-ML metadata is not carried over from the input to the output column. + + This maintains vector sparsity. .. versionadded:: 1.4.0 """ @@ -2296,7 +2307,7 @@ class Word2VecModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental - Model fitted by Word2Vec. + Model fitted by :py:class:`Word2Vec`. .. versionadded:: 1.4.0 """ @@ -2327,7 +2338,8 @@ class PCA(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritab """ .. note:: Experimental - PCA trains a model to project vectors to a low-dimensional space using PCA. + PCA trains a model to project vectors to a lower dimensional space of the + top :py:attr:`k` principal components. >>> from pyspark.ml.linalg import Vectors >>> data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),), @@ -2401,7 +2413,7 @@ class PCAModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental - Model fitted by PCA. + Model fitted by :py:class:`PCA`. Transforms vectors to a lower dimensional space. .. versionadded:: 1.5.0 """ @@ -2532,7 +2544,8 @@ class RFormulaModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental - Model fitted by :py:class:`RFormula`. + Model fitted by :py:class:`RFormula`. Fitting is required to determine the + factor levels of formula terms. .. versionadded:: 1.5.0 """ @@ -2624,7 +2637,7 @@ class ChiSqSelectorModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental - Model fitted by ChiSqSelector. + Model fitted by :py:class:`ChiSqSelector`. .. versionadded:: 2.0.0 """ --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org For additional commands, e-mail: commits-h...@spark.apache.org