Repository: spark Updated Branches: refs/heads/branch-2.1 a49dfa93e -> 69856f283
http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala ---------------------------------------------------------------------- diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala index e96c2bc..6bb3271 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala @@ -213,7 +213,7 @@ object MLUtils extends Logging { } /** - * Version of [[kFold()]] taking a Long seed. + * Version of `kFold()` taking a Long seed. */ @Since("2.0.0") def kFold[T: ClassTag](rdd: RDD[T], numFolds: Int, seed: Long): Array[(RDD[T], RDD[T])] = { @@ -262,7 +262,7 @@ object MLUtils extends Logging { * @param dataset input dataset * @param cols a list of vector columns to be converted. New vector columns will be ignored. If * unspecified, all old vector columns will be converted except nested ones. - * @return the input [[DataFrame]] with old vector columns converted to the new vector type + * @return the input `DataFrame` with old vector columns converted to the new vector type */ @Since("2.0.0") @varargs @@ -314,7 +314,7 @@ object MLUtils extends Logging { * @param dataset input dataset * @param cols a list of vector columns to be converted. Old vector columns will be ignored. If * unspecified, all new vector columns will be converted except nested ones. - * @return the input [[DataFrame]] with new vector columns converted to the old vector type + * @return the input `DataFrame` with new vector columns converted to the old vector type */ @Since("2.0.0") @varargs @@ -366,7 +366,7 @@ object MLUtils extends Logging { * @param dataset input dataset * @param cols a list of matrix columns to be converted. New matrix columns will be ignored. If * unspecified, all old matrix columns will be converted except nested ones. - * @return the input [[DataFrame]] with old matrix columns converted to the new matrix type + * @return the input `DataFrame` with old matrix columns converted to the new matrix type */ @Since("2.0.0") @varargs @@ -416,7 +416,7 @@ object MLUtils extends Logging { * @param dataset input dataset * @param cols a list of matrix columns to be converted. Old matrix columns will be ignored. If * unspecified, all new matrix columns will be converted except nested ones. - * @return the input [[DataFrame]] with new matrix columns converted to the old matrix type + * @return the input `DataFrame` with new matrix columns converted to the old matrix type */ @Since("2.0.0") @varargs http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/mllib/src/main/scala/org/apache/spark/mllib/util/modelSaveLoad.scala ---------------------------------------------------------------------- diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/modelSaveLoad.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/modelSaveLoad.scala index c881c8e..da0eb04 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/modelSaveLoad.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/modelSaveLoad.scala @@ -72,7 +72,7 @@ trait Loader[M <: Saveable] { /** * Load a model from the given path. * - * The model should have been saved by [[Saveable.save]]. + * The model should have been saved by `Saveable.save`. * * @param sc Spark context used for loading model files. * @param path Path specifying the directory to which the model was saved. http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/pom.xml ---------------------------------------------------------------------- diff --git a/pom.xml b/pom.xml index 7c0b0b5..5c417d2 100644 --- a/pom.xml +++ b/pom.xml @@ -2495,6 +2495,18 @@ <name>tparam</name> <placement>X</placement> </tag> + <tag> + <name>constructor</name> + <placement>X</placement> + </tag> + <tag> + <name>todo</name> + <placement>X</placement> + </tag> + <tag> + <name>groupname</name> + <placement>X</placement> + </tag> </tags> </configuration> </plugin> http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/project/SparkBuild.scala ---------------------------------------------------------------------- diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index 429a163..e3fbe03 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -745,7 +745,10 @@ object Unidoc { "-tag", """example:a:Example\:""", "-tag", """note:a:Note\:""", "-tag", "group:X", - "-tag", "tparam:X" + "-tag", "tparam:X", + "-tag", "constructor:X", + "-tag", "todo:X", + "-tag", "groupname:X" ), // Use GitHub repository for Scaladoc source links http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala index 65f9142..a821d2c 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala @@ -343,7 +343,7 @@ trait Row extends Serializable { } /** - * Returns a Map(name -> value) for the requested fieldNames + * Returns a Map(name -> value) for the requested fieldNames * For primitive types if value is null it returns 'zero value' specific for primitive * ie. 0 for Int - use isNullAt to ensure that value is not null * http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/CentralMomentAgg.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/CentralMomentAgg.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/CentralMomentAgg.scala index 3020547..1a93f45 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/CentralMomentAgg.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/CentralMomentAgg.scala @@ -37,8 +37,8 @@ import org.apache.spark.sql.types._ * - Xiangrui Meng. "Simpler Online Updates for Arbitrary-Order Central Moments." * 2015. http://arxiv.org/abs/1510.04923 * - * @see [[https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance - * Algorithms for calculating variance (Wikipedia)]] + * @see <a href="https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance"> + * Algorithms for calculating variance (Wikipedia)</a> * * @param child to compute central moments of. */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/BinaryType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/BinaryType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/BinaryType.scala index a4a358a..02c8318 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/BinaryType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/BinaryType.scala @@ -27,7 +27,7 @@ import org.apache.spark.sql.catalyst.util.TypeUtils /** * The data type representing `Array[Byte]` values. - * Please use the singleton [[DataTypes.BinaryType]]. + * Please use the singleton `DataTypes.BinaryType`. */ @InterfaceStability.Stable class BinaryType private() extends AtomicType { http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/BooleanType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/BooleanType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/BooleanType.scala index 059f89f..cee78f4 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/BooleanType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/BooleanType.scala @@ -25,7 +25,7 @@ import org.apache.spark.sql.catalyst.ScalaReflectionLock /** - * The data type representing `Boolean` values. Please use the singleton [[DataTypes.BooleanType]]. + * The data type representing `Boolean` values. Please use the singleton `DataTypes.BooleanType`. * * @since 1.3.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ByteType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ByteType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ByteType.scala index bc6251f..b1dd5ed 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ByteType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ByteType.scala @@ -24,7 +24,7 @@ import org.apache.spark.annotation.InterfaceStability import org.apache.spark.sql.catalyst.ScalaReflectionLock /** - * The data type representing `Byte` values. Please use the singleton [[DataTypes.ByteType]]. + * The data type representing `Byte` values. Please use the singleton `DataTypes.ByteType`. * * @since 1.3.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/CalendarIntervalType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/CalendarIntervalType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/CalendarIntervalType.scala index 21f3497..2342036 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/CalendarIntervalType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/CalendarIntervalType.scala @@ -23,7 +23,7 @@ import org.apache.spark.annotation.InterfaceStability * The data type representing calendar time intervals. The calendar time interval is stored * internally in two components: number of months the number of microseconds. * - * Please use the singleton [[DataTypes.CalendarIntervalType]]. + * Please use the singleton `DataTypes.CalendarIntervalType`. * * @note Calendar intervals are not comparable. * http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateType.scala index 8d0ecc0..0c0574b 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateType.scala @@ -27,7 +27,7 @@ import org.apache.spark.sql.catalyst.ScalaReflectionLock /** * A date type, supporting "0001-01-01" through "9999-12-31". * - * Please use the singleton [[DataTypes.DateType]]. + * Please use the singleton `DataTypes.DateType`. * * Internally, this is represented as the number of days from 1970-01-01. * http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala index d7ca0cb..cecad3b 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala @@ -34,7 +34,7 @@ import org.apache.spark.sql.catalyst.expressions.Expression * * The default precision and scale is (10, 0). * - * Please use [[DataTypes.createDecimalType()]] to create a specific instance. + * Please use `DataTypes.createDecimalType()` to create a specific instance. * * @since 1.3.0 */ @@ -92,7 +92,7 @@ case class DecimalType(precision: Int, scale: Int) extends FractionalType { } /** - * The default size of a value of the DecimalType is 8 bytes (precision <= 18) or 16 bytes. + * The default size of a value of the DecimalType is 8 bytes (precision <= 18) or 16 bytes. */ override def defaultSize: Int = if (precision <= Decimal.MAX_LONG_DIGITS) 8 else 16 http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DoubleType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DoubleType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DoubleType.scala index c21ac0e..400f7ae 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DoubleType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DoubleType.scala @@ -26,7 +26,7 @@ import org.apache.spark.sql.catalyst.ScalaReflectionLock import org.apache.spark.util.Utils /** - * The data type representing `Double` values. Please use the singleton [[DataTypes.DoubleType]]. + * The data type representing `Double` values. Please use the singleton `DataTypes.DoubleType`. * * @since 1.3.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/FloatType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/FloatType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/FloatType.scala index c5bf888..b9812b2 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/FloatType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/FloatType.scala @@ -26,7 +26,7 @@ import org.apache.spark.sql.catalyst.ScalaReflectionLock import org.apache.spark.util.Utils /** - * The data type representing `Float` values. Please use the singleton [[DataTypes.FloatType]]. + * The data type representing `Float` values. Please use the singleton `DataTypes.FloatType`. * * @since 1.3.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/IntegerType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/IntegerType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/IntegerType.scala index 724e59c..dca612e 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/IntegerType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/IntegerType.scala @@ -25,7 +25,7 @@ import org.apache.spark.sql.catalyst.ScalaReflectionLock /** - * The data type representing `Int` values. Please use the singleton [[DataTypes.IntegerType]]. + * The data type representing `Int` values. Please use the singleton `DataTypes.IntegerType`. * * @since 1.3.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/LongType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/LongType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/LongType.scala index 42285a9..396c335 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/LongType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/LongType.scala @@ -24,7 +24,7 @@ import org.apache.spark.annotation.InterfaceStability import org.apache.spark.sql.catalyst.ScalaReflectionLock /** - * The data type representing `Long` values. Please use the singleton [[DataTypes.LongType]]. + * The data type representing `Long` values. Please use the singleton `DataTypes.LongType`. * * @since 1.3.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/MapType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/MapType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/MapType.scala index 3a32aa4..fbf3a61 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/MapType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/MapType.scala @@ -25,7 +25,7 @@ import org.apache.spark.annotation.InterfaceStability /** * The data type for Maps. Keys in a map are not allowed to have `null` values. * - * Please use [[DataTypes.createMapType()]] to create a specific instance. + * Please use `DataTypes.createMapType()` to create a specific instance. * * @param keyType The data type of map keys. * @param valueType The data type of map values. http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/NullType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/NullType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/NullType.scala index bdf9a81..494225b 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/NullType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/NullType.scala @@ -21,7 +21,7 @@ import org.apache.spark.annotation.InterfaceStability /** - * The data type representing `NULL` values. Please use the singleton [[DataTypes.NullType]]. + * The data type representing `NULL` values. Please use the singleton `DataTypes.NullType`. * * @since 1.3.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ShortType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ShortType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ShortType.scala index 3fee299..1410d5b 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ShortType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/ShortType.scala @@ -24,7 +24,7 @@ import org.apache.spark.annotation.InterfaceStability import org.apache.spark.sql.catalyst.ScalaReflectionLock /** - * The data type representing `Short` values. Please use the singleton [[DataTypes.ShortType]]. + * The data type representing `Short` values. Please use the singleton `DataTypes.ShortType`. * * @since 1.3.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/StringType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/StringType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/StringType.scala index 5d5a6f5..d1c0da3 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/StringType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/StringType.scala @@ -25,7 +25,7 @@ import org.apache.spark.sql.catalyst.ScalaReflectionLock import org.apache.spark.unsafe.types.UTF8String /** - * The data type representing `String` values. Please use the singleton [[DataTypes.StringType]]. + * The data type representing `String` values. Please use the singleton `DataTypes.StringType`. * * @since 1.3.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/catalyst/src/main/scala/org/apache/spark/sql/types/TimestampType.scala ---------------------------------------------------------------------- diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/TimestampType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/TimestampType.scala index 4540d83..2875995 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/TimestampType.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/TimestampType.scala @@ -26,7 +26,7 @@ import org.apache.spark.sql.catalyst.ScalaReflectionLock /** * The data type representing `java.sql.Timestamp` values. - * Please use the singleton [[DataTypes.TimestampType]]. + * Please use the singleton `DataTypes.TimestampType`. * * @since 1.3.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala index a77937e..5be9a99 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala @@ -239,8 +239,8 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging { } /** - * Loads a JSON file ([[http://jsonlines.org/ JSON Lines text format or newline-delimited JSON]]) - * and returns the result as a [[DataFrame]]. + * Loads a JSON file (<a href="http://jsonlines.org/">JSON Lines text format or + * newline-delimited JSON</a>) and returns the result as a [[DataFrame]]. * See the documentation on the overloaded `json()` method with varargs for more details. * * @since 1.4.0 @@ -251,8 +251,8 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging { } /** - * Loads a JSON file ([[http://jsonlines.org/ JSON Lines text format or newline-delimited JSON]]) - * and returns the result as a [[DataFrame]]. + * Loads a JSON file (<a href="http://jsonlines.org/">JSON Lines text format or + * newline-delimited JSON</a>) and returns the result as a [[DataFrame]]. * * This function goes through the input once to determine the input schema. If you know the * schema in advance, use the version that specifies the schema to avoid the extra scan. @@ -297,8 +297,9 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging { def json(paths: String*): DataFrame = format("json").load(paths : _*) /** - * Loads a `JavaRDD[String]` storing JSON objects ([[http://jsonlines.org/ JSON Lines text format - * or newline-delimited JSON]]) and returns the result as a [[DataFrame]]. + * Loads a `JavaRDD[String]` storing JSON objects (<a href="http://jsonlines.org/">JSON + * Lines text format or newline-delimited JSON</a>) and returns the result as + * a [[DataFrame]]. * * Unless the schema is specified using [[schema]] function, this function goes through the * input once to determine the input schema. @@ -309,8 +310,8 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging { def json(jsonRDD: JavaRDD[String]): DataFrame = json(jsonRDD.rdd) /** - * Loads an `RDD[String]` storing JSON objects ([[http://jsonlines.org/ JSON Lines text format or - * newline-delimited JSON]]) and returns the result as a [[DataFrame]]. + * Loads an `RDD[String]` storing JSON objects (<a href="http://jsonlines.org/">JSON Lines + * text format or newline-delimited JSON</a>) and returns the result as a [[DataFrame]]. * * Unless the schema is specified using [[schema]] function, this function goes through the * input once to determine the input schema. http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala index 6335fc4..a9a861c 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala @@ -48,8 +48,8 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) { * * This method implements a variation of the Greenwald-Khanna algorithm (with some speed * optimizations). - * The algorithm was first present in [[http://dx.doi.org/10.1145/375663.375670 Space-efficient - * Online Computation of Quantile Summaries]] by Greenwald and Khanna. + * The algorithm was first present in <a href="http://dx.doi.org/10.1145/375663.375670"> + * Space-efficient Online Computation of Quantile Summaries</a> by Greenwald and Khanna. * * @param col the name of the numerical column * @param probabilities a list of quantile probabilities @@ -184,7 +184,8 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) { /** * Finding frequent items for columns, possibly with false positives. Using the * frequent element count algorithm described in - * [[http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou]]. + * <a href="http://dx.doi.org/10.1145/762471.762473">here</a>, proposed by Karp, + * Schenker, and Papadimitriou. * The `support` should be greater than 1e-4. * * This function is meant for exploratory data analysis, as we make no guarantee about the @@ -230,7 +231,8 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) { /** * Finding frequent items for columns, possibly with false positives. Using the * frequent element count algorithm described in - * [[http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou]]. + * <a href="http://dx.doi.org/10.1145/762471.762473">here</a>, proposed by Karp, + * Schenker, and Papadimitriou. * Uses a `default` support of 1%. * * This function is meant for exploratory data analysis, as we make no guarantee about the @@ -248,7 +250,8 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) { /** * (Scala-specific) Finding frequent items for columns, possibly with false positives. Using the * frequent element count algorithm described in - * [[http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou]]. + * <a href="http://dx.doi.org/10.1145/762471.762473">here</a>, proposed by Karp, Schenker, + * and Papadimitriou. * * This function is meant for exploratory data analysis, as we make no guarantee about the * backward compatibility of the schema of the resulting [[DataFrame]]. @@ -291,7 +294,8 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) { /** * (Scala-specific) Finding frequent items for columns, possibly with false positives. Using the * frequent element count algorithm described in - * [[http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou]]. + * <a href="http://dx.doi.org/10.1145/762471.762473">here</a>, proposed by Karp, Schenker, + * and Papadimitriou. * Uses a `default` support of 1%. * * This function is meant for exploratory data analysis, as we make no guarantee about the http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala index 15281f2..2d86342 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala @@ -442,8 +442,8 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) { } /** - * Saves the content of the [[DataFrame]] in JSON format ([[http://jsonlines.org/ JSON Lines text - * format or newline-delimited JSON]]) at the specified path. + * Saves the content of the [[DataFrame]] in JSON format (<a href="http://jsonlines.org/"> + * JSON Lines text format or newline-delimited JSON</a>) at the specified path. * This is equivalent to: * {{{ * format("json").save(path) http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index 2fae936..858fa4c 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -172,7 +172,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) def experimental: ExperimentalMethods = sparkSession.experimental /** - * Returns a [[DataFrame]] with no rows or columns. + * Returns a `DataFrame` with no rows or columns. * * @group basic * @since 1.3.0 @@ -254,7 +254,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * :: Experimental :: * (Scala-specific) Implicit methods available in Scala for converting - * common Scala objects into [[DataFrame]]s. + * common Scala objects into `DataFrame`s. * * {{{ * val sqlContext = new SQLContext(sc) @@ -298,7 +298,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) } /** - * Convert a [[BaseRelation]] created for external data sources into a [[DataFrame]]. + * Convert a [[BaseRelation]] created for external data sources into a `DataFrame`. * * @group dataframes * @since 1.3.0 @@ -309,7 +309,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * :: DeveloperApi :: - * Creates a [[DataFrame]] from an [[RDD]] containing [[Row]]s using the given schema. + * Creates a `DataFrame` from an [[RDD]] containing [[Row]]s using the given schema. * It is important to make sure that the structure of every [[Row]] of the provided RDD matches * the provided schema. Otherwise, there will be runtime exception. * Example: @@ -438,7 +438,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * :: DeveloperApi :: - * Creates a [[DataFrame]] from a [[JavaRDD]] containing [[Row]]s using the given schema. + * Creates a `DataFrame` from a [[JavaRDD]] containing [[Row]]s using the given schema. * It is important to make sure that the structure of every [[Row]] of the provided RDD matches * the provided schema. Otherwise, there will be runtime exception. * @@ -453,7 +453,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * :: DeveloperApi :: - * Creates a [[DataFrame]] from a [[java.util.List]] containing [[Row]]s using the given schema. + * Creates a `DataFrame` from a [[java.util.List]] containing [[Row]]s using the given schema. * It is important to make sure that the structure of every [[Row]] of the provided List matches * the provided schema. Otherwise, there will be runtime exception. * @@ -504,7 +504,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * Returns a [[DataFrameReader]] that can be used to read non-streaming data in as a - * [[DataFrame]]. + * `DataFrame`. * {{{ * sqlContext.read.parquet("/path/to/file.parquet") * sqlContext.read.schema(schema).json("/path/to/file.json") @@ -518,7 +518,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * :: Experimental :: - * Returns a [[DataStreamReader]] that can be used to read streaming data in as a [[DataFrame]]. + * Returns a [[DataStreamReader]] that can be used to read streaming data in as a `DataFrame`. * {{{ * sparkSession.readStream.parquet("/path/to/directory/of/parquet/files") * sparkSession.readStream.schema(schema).json("/path/to/directory/of/json/files") @@ -617,7 +617,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) } /** - * Registers the given [[DataFrame]] as a temporary table in the catalog. Temporary tables exist + * Registers the given `DataFrame` as a temporary table in the catalog. Temporary tables exist * only during the lifetime of this instance of SQLContext. */ private[sql] def registerDataFrameAsTable(df: DataFrame, tableName: String): Unit = { @@ -638,7 +638,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * :: Experimental :: - * Creates a [[DataFrame]] with a single [[LongType]] column named `id`, containing elements + * Creates a `DataFrame` with a single [[LongType]] column named `id`, containing elements * in a range from 0 to `end` (exclusive) with step value 1. * * @since 1.4.1 @@ -650,7 +650,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * :: Experimental :: - * Creates a [[DataFrame]] with a single [[LongType]] column named `id`, containing elements + * Creates a `DataFrame` with a single [[LongType]] column named `id`, containing elements * in a range from `start` to `end` (exclusive) with step value 1. * * @since 1.4.0 @@ -662,7 +662,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * :: Experimental :: - * Creates a [[DataFrame]] with a single [[LongType]] column named `id`, containing elements + * Creates a `DataFrame` with a single [[LongType]] column named `id`, containing elements * in a range from `start` to `end` (exclusive) with a step value. * * @since 2.0.0 @@ -676,7 +676,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * :: Experimental :: - * Creates a [[DataFrame]] with a single [[LongType]] column named `id`, containing elements + * Creates a `DataFrame` with a single [[LongType]] column named `id`, containing elements * in an range from `start` to `end` (exclusive) with an step value, with partition number * specified. * @@ -690,7 +690,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) } /** - * Executes a SQL query using Spark, returning the result as a [[DataFrame]]. The dialect that is + * Executes a SQL query using Spark, returning the result as a `DataFrame`. The dialect that is * used for SQL parsing can be configured with 'spark.sql.dialect'. * * @group basic @@ -699,7 +699,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) def sql(sqlText: String): DataFrame = sparkSession.sql(sqlText) /** - * Returns the specified table as a [[DataFrame]]. + * Returns the specified table as a `DataFrame`. * * @group ddl_ops * @since 1.3.0 @@ -709,7 +709,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) } /** - * Returns a [[DataFrame]] containing names of existing tables in the current database. + * Returns a `DataFrame` containing names of existing tables in the current database. * The returned DataFrame has two columns, tableName and isTemporary (a Boolean * indicating if a table is a temporary one or not). * @@ -721,7 +721,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) } /** - * Returns a [[DataFrame]] containing names of existing tables in the given database. + * Returns a `DataFrame` containing names of existing tables in the given database. * The returned DataFrame has two columns, tableName and isTemporary (a Boolean * indicating if a table is a temporary one or not). * @@ -799,8 +799,8 @@ class SQLContext private[sql](val sparkSession: SparkSession) } /** - * Loads a Parquet file, returning the result as a [[DataFrame]]. This function returns an empty - * [[DataFrame]] if no paths are passed in. + * Loads a Parquet file, returning the result as a `DataFrame`. This function returns an empty + * `DataFrame` if no paths are passed in. * * @group specificdata * @deprecated As of 1.4.0, replaced by `read().parquet()`. @@ -816,7 +816,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) } /** - * Loads a JSON file (one object per line), returning the result as a [[DataFrame]]. + * Loads a JSON file (one object per line), returning the result as a `DataFrame`. * It goes through the entire dataset once to determine the schema. * * @group specificdata @@ -829,7 +829,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * Loads a JSON file (one object per line) and applies the given schema, - * returning the result as a [[DataFrame]]. + * returning the result as a `DataFrame`. * * @group specificdata * @deprecated As of 1.4.0, replaced by `read().json()`. @@ -850,7 +850,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * Loads an RDD[String] storing JSON objects (one object per record), returning the result as a - * [[DataFrame]]. + * `DataFrame`. * It goes through the entire dataset once to determine the schema. * * @group specificdata @@ -861,7 +861,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * Loads an RDD[String] storing JSON objects (one object per record), returning the result as a - * [[DataFrame]]. + * `DataFrame`. * It goes through the entire dataset once to determine the schema. * * @group specificdata @@ -872,7 +872,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * Loads an RDD[String] storing JSON objects (one object per record) and applies the given schema, - * returning the result as a [[DataFrame]]. + * returning the result as a `DataFrame`. * * @group specificdata * @deprecated As of 1.4.0, replaced by `read().json()`. @@ -884,7 +884,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * Loads an JavaRDD<String> storing JSON objects (one object per record) and applies the given - * schema, returning the result as a [[DataFrame]]. + * schema, returning the result as a `DataFrame`. * * @group specificdata * @deprecated As of 1.4.0, replaced by `read().json()`. @@ -896,7 +896,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * Loads an RDD[String] storing JSON objects (one object per record) inferring the - * schema, returning the result as a [[DataFrame]]. + * schema, returning the result as a `DataFrame`. * * @group specificdata * @deprecated As of 1.4.0, replaced by `read().json()`. @@ -908,7 +908,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) /** * Loads a JavaRDD[String] storing JSON objects (one object per record) inferring the - * schema, returning the result as a [[DataFrame]]. + * schema, returning the result as a `DataFrame`. * * @group specificdata * @deprecated As of 1.4.0, replaced by `read().json()`. @@ -995,7 +995,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) } /** - * Construct a [[DataFrame]] representing the database table accessible via JDBC URL + * Construct a `DataFrame` representing the database table accessible via JDBC URL * url named table. * * @group specificdata @@ -1007,7 +1007,7 @@ class SQLContext private[sql](val sparkSession: SparkSession) } /** - * Construct a [[DataFrame]] representing the database table accessible via JDBC URL + * Construct a `DataFrame` representing the database table accessible via JDBC URL * url named table. Partitions of the table will be retrieved in parallel based on the parameters * passed to this function. * @@ -1031,10 +1031,10 @@ class SQLContext private[sql](val sparkSession: SparkSession) } /** - * Construct a [[DataFrame]] representing the database table accessible via JDBC URL + * Construct a `DataFrame` representing the database table accessible via JDBC URL * url named table. The theParts parameter gives a list expressions * suitable for inclusion in WHERE clauses; each one defines one partition - * of the [[DataFrame]]. + * of the `DataFrame`. * * @group specificdata * @deprecated As of 1.4.0, replaced by `read().jdbc()`. http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala index b9dbfcf..cdb755e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/FrequentItems.scala @@ -69,7 +69,8 @@ object FrequentItems extends Logging { /** * Finding frequent items for columns, possibly with false positives. Using the * frequent element count algorithm described in - * [[http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou]]. + * <a href="http://dx.doi.org/10.1145/762471.762473">here</a>, proposed by Karp, Schenker, + * and Papadimitriou. * The `support` should be greater than 1e-4. * For Internal use only. * http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/StatFunctions.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/StatFunctions.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/StatFunctions.scala index c02b154..2b2e706 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/StatFunctions.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/stat/StatFunctions.scala @@ -41,8 +41,8 @@ object StatFunctions extends Logging { * * This method implements a variation of the Greenwald-Khanna algorithm (with some speed * optimizations). - * The algorithm was first present in [[http://dx.doi.org/10.1145/375663.375670 Space-efficient - * Online Computation of Quantile Summaries]] by Greenwald and Khanna. + * The algorithm was first present in <a href="http://dx.doi.org/10.1145/375663.375670"> + * Space-efficient Online Computation of Quantile Summaries</a> by Greenwald and Khanna. * * @param df the dataframe * @param cols numerical columns of the dataframe http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/expressions/Aggregator.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/expressions/Aggregator.scala b/sql/core/src/main/scala/org/apache/spark/sql/expressions/Aggregator.scala index eea9841..058c38c 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/expressions/Aggregator.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/expressions/Aggregator.scala @@ -25,7 +25,7 @@ import org.apache.spark.sql.execution.aggregate.TypedAggregateExpression /** * :: Experimental :: - * A base class for user-defined aggregations, which can be used in [[Dataset]] operations to take + * A base class for user-defined aggregations, which can be used in `Dataset` operations to take * all of the elements of a group and reduce them to a single value. * * For example, the following aggregator extracts an `int` from a specific class and adds them up: @@ -80,19 +80,19 @@ abstract class Aggregator[-IN, BUF, OUT] extends Serializable { def finish(reduction: BUF): OUT /** - * Specifies the [[Encoder]] for the intermediate value type. + * Specifies the `Encoder` for the intermediate value type. * @since 2.0.0 */ def bufferEncoder: Encoder[BUF] /** - * Specifies the [[Encoder]] for the final ouput value type. + * Specifies the `Encoder` for the final ouput value type. * @since 2.0.0 */ def outputEncoder: Encoder[OUT] /** - * Returns this `Aggregator` as a [[TypedColumn]] that can be used in [[Dataset]]. + * Returns this `Aggregator` as a `TypedColumn` that can be used in `Dataset`. * operations. * @since 1.6.0 */ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/expressions/UserDefinedFunction.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/expressions/UserDefinedFunction.scala b/sql/core/src/main/scala/org/apache/spark/sql/expressions/UserDefinedFunction.scala index 36dd5f7..b13fe70 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/expressions/UserDefinedFunction.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/expressions/UserDefinedFunction.scala @@ -24,7 +24,7 @@ import org.apache.spark.sql.functions import org.apache.spark.sql.types.DataType /** - * A user-defined function. To create one, use the `udf` functions in [[functions]]. + * A user-defined function. To create one, use the `udf` functions in `functions`. * * As an example: * {{{ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/expressions/Window.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/expressions/Window.scala b/sql/core/src/main/scala/org/apache/spark/sql/expressions/Window.scala index 327bc37..f3cf305 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/expressions/Window.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/expressions/Window.scala @@ -117,8 +117,8 @@ object Window { * "current row", while "-1" means the row before the current row, and "5" means the fifth row * after the current row. * - * We recommend users use [[Window.unboundedPreceding]], [[Window.unboundedFollowing]], - * and [[Window.currentRow]] to specify special boundary values, rather than using integral + * We recommend users use `Window.unboundedPreceding`, `Window.unboundedFollowing`, + * and `Window.currentRow` to specify special boundary values, rather than using integral * values directly. * * A row based boundary is based on the position of the row within the partition. @@ -148,9 +148,9 @@ object Window { * }}} * * @param start boundary start, inclusive. The frame is unbounded if this is - * the minimum long value ([[Window.unboundedPreceding]]). + * the minimum long value (`Window.unboundedPreceding`). * @param end boundary end, inclusive. The frame is unbounded if this is the - * maximum long value ([[Window.unboundedFollowing]]). + * maximum long value (`Window.unboundedFollowing`). * @since 2.1.0 */ // Note: when updating the doc for this method, also update WindowSpec.rowsBetween. @@ -166,8 +166,8 @@ object Window { * while "-1" means one off before the current row, and "5" means the five off after the * current row. * - * We recommend users use [[Window.unboundedPreceding]], [[Window.unboundedFollowing]], - * and [[Window.currentRow]] to specify special boundary values, rather than using integral + * We recommend users use `Window.unboundedPreceding`, `Window.unboundedFollowing`, + * and `Window.currentRow` to specify special boundary values, rather than using integral * values directly. * * A range based boundary is based on the actual value of the ORDER BY @@ -200,9 +200,9 @@ object Window { * }}} * * @param start boundary start, inclusive. The frame is unbounded if this is - * the minimum long value ([[Window.unboundedPreceding]]). + * the minimum long value (`Window.unboundedPreceding`). * @param end boundary end, inclusive. The frame is unbounded if this is the - * maximum long value ([[Window.unboundedFollowing]]). + * maximum long value (`Window.unboundedFollowing`). * @since 2.1.0 */ // Note: when updating the doc for this method, also update WindowSpec.rangeBetween. http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/expressions/WindowSpec.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/expressions/WindowSpec.scala b/sql/core/src/main/scala/org/apache/spark/sql/expressions/WindowSpec.scala index 4a8ce69..de7d7a1 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/expressions/WindowSpec.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/expressions/WindowSpec.scala @@ -85,8 +85,8 @@ class WindowSpec private[sql]( * "current row", while "-1" means the row before the current row, and "5" means the fifth row * after the current row. * - * We recommend users use [[Window.unboundedPreceding]], [[Window.unboundedFollowing]], - * and [[Window.currentRow]] to specify special boundary values, rather than using integral + * We recommend users use `Window.unboundedPreceding`, `Window.unboundedFollowing`, + * and `[Window.currentRow` to specify special boundary values, rather than using integral * values directly. * * A row based boundary is based on the position of the row within the partition. @@ -116,9 +116,9 @@ class WindowSpec private[sql]( * }}} * * @param start boundary start, inclusive. The frame is unbounded if this is - * the minimum long value ([[Window.unboundedPreceding]]). + * the minimum long value (`Window.unboundedPreceding`). * @param end boundary end, inclusive. The frame is unbounded if this is the - * maximum long value ([[Window.unboundedFollowing]]). + * maximum long value (`Window.unboundedFollowing`). * @since 1.4.0 */ // Note: when updating the doc for this method, also update Window.rowsBetween. @@ -133,8 +133,8 @@ class WindowSpec private[sql]( * while "-1" means one off before the current row, and "5" means the five off after the * current row. * - * We recommend users use [[Window.unboundedPreceding]], [[Window.unboundedFollowing]], - * and [[Window.currentRow]] to specify special boundary values, rather than using integral + * We recommend users use `Window.unboundedPreceding`, `Window.unboundedFollowing`, + * and `[Window.currentRow` to specify special boundary values, rather than using integral * values directly. * * A range based boundary is based on the actual value of the ORDER BY @@ -167,9 +167,9 @@ class WindowSpec private[sql]( * }}} * * @param start boundary start, inclusive. The frame is unbounded if this is - * the minimum long value ([[Window.unboundedPreceding]]). + * the minimum long value (`Window.unboundedPreceding`). * @param end boundary end, inclusive. The frame is unbounded if this is the - * maximum long value ([[Window.unboundedFollowing]]). + * maximum long value (`Window.unboundedFollowing`). * @since 1.4.0 */ // Note: when updating the doc for this method, also update Window.rangeBetween. http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/expressions/scalalang/typed.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/expressions/scalalang/typed.scala b/sql/core/src/main/scala/org/apache/spark/sql/expressions/scalalang/typed.scala index aa71cb9..650ffd4 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/expressions/scalalang/typed.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/expressions/scalalang/typed.scala @@ -23,7 +23,7 @@ import org.apache.spark.sql.execution.aggregate._ /** * :: Experimental :: - * Type-safe functions available for [[Dataset]] operations in Scala. + * Type-safe functions available for `Dataset` operations in Scala. * * Java users should use [[org.apache.spark.sql.expressions.javalang.typed]]. * http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/expressions/udaf.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/expressions/udaf.scala b/sql/core/src/main/scala/org/apache/spark/sql/expressions/udaf.scala index bc9788d..4976b87 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/expressions/udaf.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/expressions/udaf.scala @@ -32,9 +32,9 @@ import org.apache.spark.sql.types._ abstract class UserDefinedAggregateFunction extends Serializable { /** - * A [[StructType]] represents data types of input arguments of this aggregate function. + * A `StructType` represents data types of input arguments of this aggregate function. * For example, if a [[UserDefinedAggregateFunction]] expects two input arguments - * with type of [[DoubleType]] and [[LongType]], the returned [[StructType]] will look like + * with type of `DoubleType` and `LongType`, the returned `StructType` will look like * * ``` * new StructType() @@ -42,7 +42,7 @@ abstract class UserDefinedAggregateFunction extends Serializable { * .add("longInput", LongType) * ``` * - * The name of a field of this [[StructType]] is only used to identify the corresponding + * The name of a field of this `StructType` is only used to identify the corresponding * input argument. Users can choose names to identify the input arguments. * * @since 1.5.0 @@ -50,10 +50,10 @@ abstract class UserDefinedAggregateFunction extends Serializable { def inputSchema: StructType /** - * A [[StructType]] represents data types of values in the aggregation buffer. + * A `StructType` represents data types of values in the aggregation buffer. * For example, if a [[UserDefinedAggregateFunction]]'s buffer has two values - * (i.e. two intermediate values) with type of [[DoubleType]] and [[LongType]], - * the returned [[StructType]] will look like + * (i.e. two intermediate values) with type of `DoubleType` and `LongType`, + * the returned `StructType` will look like * * ``` * new StructType() @@ -61,7 +61,7 @@ abstract class UserDefinedAggregateFunction extends Serializable { * .add("longInput", LongType) * ``` * - * The name of a field of this [[StructType]] is only used to identify the corresponding + * The name of a field of this `StructType` is only used to identify the corresponding * buffer value. Users can choose names to identify the input arguments. * * @since 1.5.0 @@ -69,7 +69,7 @@ abstract class UserDefinedAggregateFunction extends Serializable { def bufferSchema: StructType /** - * The [[DataType]] of the returned value of this [[UserDefinedAggregateFunction]]. + * The `DataType` of the returned value of this [[UserDefinedAggregateFunction]]. * * @since 1.5.0 */ @@ -121,7 +121,7 @@ abstract class UserDefinedAggregateFunction extends Serializable { def evaluate(buffer: Row): Any /** - * Creates a [[Column]] for this UDAF using given [[Column]]s as input arguments. + * Creates a `Column` for this UDAF using given `Column`s as input arguments. * * @since 1.5.0 */ @@ -136,8 +136,8 @@ abstract class UserDefinedAggregateFunction extends Serializable { } /** - * Creates a [[Column]] for this UDAF using the distinct values of the given - * [[Column]]s as input arguments. + * Creates a `Column` for this UDAF using the distinct values of the given + * `Column`s as input arguments. * * @since 1.5.0 */ @@ -153,7 +153,7 @@ abstract class UserDefinedAggregateFunction extends Serializable { } /** - * A [[Row]] representing a mutable aggregation buffer. + * A `Row` representing a mutable aggregation buffer. * * This is not meant to be extended outside of Spark. * http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JdbcDialects.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JdbcDialects.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JdbcDialects.scala index 7c64e28..83857c3 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JdbcDialects.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JdbcDialects.scala @@ -40,7 +40,7 @@ case class JdbcType(databaseTypeDefinition : String, jdbcNullType : Int) * SQL dialect of a certain database or jdbc driver. * Lots of databases define types that aren't explicitly supported * by the JDBC spec. Some JDBC drivers also report inaccurate - * information---for instance, BIT(n>1) being reported as a BIT type is quite + * information---for instance, BIT(n>1) being reported as a BIT type is quite * common, even though BIT in JDBC is meant for single-bit values. Also, there * does not appear to be a standard name for an unbounded string or binary * type; we use BLOB and CLOB by default but override with database-specific @@ -134,7 +134,7 @@ abstract class JdbcDialect extends Serializable { /** * :: DeveloperApi :: - * Registry of dialects that apply to every new jdbc [[org.apache.spark.sql.DataFrame]]. + * Registry of dialects that apply to every new jdbc `org.apache.spark.sql.DataFrame`. * * If multiple matching dialects are registered then all matching ones will be * tried in reverse order. A user-added dialect will thus be applied first, @@ -148,7 +148,7 @@ abstract class JdbcDialect extends Serializable { object JdbcDialects { /** - * Register a dialect for use on all new matching jdbc [[org.apache.spark.sql.DataFrame]]. + * Register a dialect for use on all new matching jdbc `org.apache.spark.sql.DataFrame`. * Reading an existing dialect will cause a move-to-front. * * @param dialect The new dialect. http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamReader.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamReader.scala b/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamReader.scala index 40b482e..c507335 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamReader.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamReader.scala @@ -27,8 +27,8 @@ import org.apache.spark.sql.execution.streaming.StreamingRelation import org.apache.spark.sql.types.StructType /** - * Interface used to load a streaming [[Dataset]] from external storage systems (e.g. file systems, - * key-value stores, etc). Use [[SparkSession.readStream]] to access this. + * Interface used to load a streaming `Dataset` from external storage systems (e.g. file systems, + * key-value stores, etc). Use `SparkSession.readStream` to access this. * * @since 2.0.0 */ @@ -109,7 +109,7 @@ final class DataStreamReader private[sql](sparkSession: SparkSession) extends Lo /** - * Loads input data stream in as a [[DataFrame]], for data streams that don't require a path + * Loads input data stream in as a `DataFrame`, for data streams that don't require a path * (e.g. external key-value stores). * * @since 2.0.0 @@ -125,7 +125,7 @@ final class DataStreamReader private[sql](sparkSession: SparkSession) extends Lo } /** - * Loads input in as a [[DataFrame]], for data streams that read from some path. + * Loads input in as a `DataFrame`, for data streams that read from some path. * * @since 2.0.0 */ @@ -134,8 +134,8 @@ final class DataStreamReader private[sql](sparkSession: SparkSession) extends Lo } /** - * Loads a JSON file stream ([[http://jsonlines.org/ JSON Lines text format or newline-delimited - * JSON]]) and returns the result as a [[DataFrame]]. + * Loads a JSON file stream (<a href="http://jsonlines.org/">JSON Lines text format or + * newline-delimited JSON</a>) and returns the result as a `DataFrame`. * * This function goes through the input once to determine the input schema. If you know the * schema in advance, use the version that specifies the schema to avoid the extra scan. @@ -181,7 +181,7 @@ final class DataStreamReader private[sql](sparkSession: SparkSession) extends Lo def json(path: String): DataFrame = format("json").load(path) /** - * Loads a CSV file stream and returns the result as a [[DataFrame]]. + * Loads a CSV file stream and returns the result as a `DataFrame`. * * This function will go through the input once to determine the input schema if `inferSchema` * is enabled. To avoid going through the entire data once, disable `inferSchema` option or @@ -243,7 +243,7 @@ final class DataStreamReader private[sql](sparkSession: SparkSession) extends Lo def csv(path: String): DataFrame = format("csv").load(path) /** - * Loads a Parquet file stream, returning the result as a [[DataFrame]]. + * Loads a Parquet file stream, returning the result as a `DataFrame`. * * You can set the following Parquet-specific option(s) for reading Parquet files: * <ul> @@ -262,7 +262,7 @@ final class DataStreamReader private[sql](sparkSession: SparkSession) extends Lo } /** - * Loads text files and returns a [[DataFrame]] whose schema starts with a string column named + * Loads text files and returns a `DataFrame` whose schema starts with a string column named * "value", and followed by partitioned columns if there are any. * * Each line in the text files is a new row in the resulting DataFrame. For example: @@ -285,7 +285,7 @@ final class DataStreamReader private[sql](sparkSession: SparkSession) extends Lo def text(path: String): DataFrame = format("text").load(path) /** - * Loads text file(s) and returns a [[Dataset]] of String. The underlying schema of the Dataset + * Loads text file(s) and returns a `Dataset` of String. The underlying schema of the Dataset * contains a single string column named "value". * * If the directory structure of the text files contains partitioning information, those are http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamWriter.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamWriter.scala b/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamWriter.scala index daed1dc..b3c600a 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamWriter.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamWriter.scala @@ -26,8 +26,8 @@ import org.apache.spark.sql.execution.streaming.{ForeachSink, MemoryPlan, Memory /** * :: Experimental :: - * Interface used to write a streaming [[Dataset]] to external storage systems (e.g. file systems, - * key-value stores, etc). Use [[Dataset.writeStream]] to access this. + * Interface used to write a streaming `Dataset` to external storage systems (e.g. file systems, + * key-value stores, etc). Use `Dataset.writeStream` to access this. * * @since 2.0.0 */ @@ -273,8 +273,8 @@ final class DataStreamWriter[T] private[sql](ds: Dataset[T]) { /** * Starts the execution of the streaming query, which will continually send results to the given - * [[ForeachWriter]] as as new data arrives. The [[ForeachWriter]] can be used to send the data - * generated by the [[DataFrame]]/[[Dataset]] to an external system. + * `ForeachWriter` as as new data arrives. The `ForeachWriter` can be used to send the data + * generated by the `DataFrame`/`Dataset` to an external system. * * Scala example: * {{{ http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/streaming/StreamingQuery.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/streaming/StreamingQuery.scala b/sql/core/src/main/scala/org/apache/spark/sql/streaming/StreamingQuery.scala index 0a85414..374313f 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/streaming/StreamingQuery.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/streaming/StreamingQuery.scala @@ -31,7 +31,7 @@ trait StreamingQuery { /** * Returns the name of the query. This name is unique across all active queries. This can be - * set in the [[org.apache.spark.sql.DataStreamWriter DataStreamWriter]] as + * set in the `org.apache.spark.sql.streaming.DataStreamWriter` as * `dataframe.writeStream.queryName("query").start()`. * @since 2.0.0 */ @@ -45,7 +45,7 @@ trait StreamingQuery { def id: Long /** - * Returns the [[SparkSession]] associated with `this`. + * Returns the `SparkSession` associated with `this`. * @since 2.0.0 */ def sparkSession: SparkSession @@ -90,10 +90,11 @@ trait StreamingQuery { * immediately (if the query was terminated by `stop()`), or throw the exception * immediately (if the query has terminated with exception). * - * @throws StreamingQueryException, if `this` query has terminated with an exception. + * @throws StreamingQueryException if the query has terminated with an exception. * * @since 2.0.0 */ + @throws[StreamingQueryException] def awaitTermination(): Unit /** @@ -106,10 +107,11 @@ trait StreamingQuery { * `true` immediately (if the query was terminated by `stop()`), or throw the exception * immediately (if the query has terminated with exception). * - * @throws StreamingQueryException, if `this` query has terminated with an exception + * @throws StreamingQueryException if the query has terminated with an exception * * @since 2.0.0 */ + @throws[StreamingQueryException] def awaitTermination(timeoutMs: Long): Boolean /** http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/streaming/StreamingQueryManager.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/streaming/StreamingQueryManager.scala b/sql/core/src/main/scala/org/apache/spark/sql/streaming/StreamingQueryManager.scala index bba7bc7..53968a8 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/streaming/StreamingQueryManager.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/streaming/StreamingQueryManager.scala @@ -31,7 +31,7 @@ import org.apache.spark.util.{Clock, SystemClock, Utils} /** * :: Experimental :: - * A class to manage all the [[StreamingQuery]] active on a [[SparkSession]]. + * A class to manage all the [[StreamingQuery]] active on a `SparkSession`. * * @since 2.0.0 */ @@ -81,10 +81,11 @@ class StreamingQueryManager private[sql] (sparkSession: SparkSession) { * users need to stop all of them after any of them terminates with exception, and then check the * `query.exception()` for each query. * - * @throws StreamingQueryException, if any query has terminated with an exception + * @throws StreamingQueryException if any query has terminated with an exception * * @since 2.0.0 */ + @throws[StreamingQueryException] def awaitAnyTermination(): Unit = { awaitTerminationLock.synchronized { while (lastTerminatedQuery == null) { @@ -113,10 +114,11 @@ class StreamingQueryManager private[sql] (sparkSession: SparkSession) { * users need to stop all of them after any of them terminates with exception, and then check the * `query.exception()` for each query. * - * @throws StreamingQueryException, if any query has terminated with an exception + * @throws StreamingQueryException if any query has terminated with an exception * * @since 2.0.0 */ + @throws[StreamingQueryException] def awaitAnyTermination(timeoutMs: Long): Boolean = { val startTime = System.currentTimeMillis http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/core/src/main/scala/org/apache/spark/sql/util/QueryExecutionListener.scala ---------------------------------------------------------------------- diff --git a/sql/core/src/main/scala/org/apache/spark/sql/util/QueryExecutionListener.scala b/sql/core/src/main/scala/org/apache/spark/sql/util/QueryExecutionListener.scala index 4504582..26ad0ea 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/util/QueryExecutionListener.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/util/QueryExecutionListener.scala @@ -68,7 +68,7 @@ trait QueryExecutionListener { /** * :: Experimental :: * - * Manager for [[QueryExecutionListener]]. See [[org.apache.spark.sql.SQLContext.listenerManager]]. + * Manager for [[QueryExecutionListener]]. See `org.apache.spark.sql.SQLContext.listenerManager`. */ @Experimental @InterfaceStability.Evolving http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/InsertIntoHiveTable.scala ---------------------------------------------------------------------- diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/InsertIntoHiveTable.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/InsertIntoHiveTable.scala index e333fc7..a2d64da 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/InsertIntoHiveTable.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/InsertIntoHiveTable.scala @@ -57,9 +57,9 @@ import org.apache.spark.util.SerializableJobConf * @param partition a map from the partition key to the partition value (optional). If the partition * value is optional, dynamic partition insert will be performed. * As an example, `INSERT INTO tbl PARTITION (a=1, b=2) AS ...` would have - * Map('a' -> Some('1'), 'b' -> Some('2')), + * Map('a' -> Some('1'), 'b' -> Some('2')), * and `INSERT INTO tbl PARTITION (a=1, b) AS ...` - * would have Map('a' -> Some('1'), 'b' -> None). + * would have Map('a' -> Some('1'), 'b' -> None). * @param child the logical plan representing data to write to. * @param overwrite overwrite existing table or partitions. * @param ifNotExists If true, only write if the table or partition does not exist. http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/hive/src/main/scala/org/apache/spark/sql/hive/orc/OrcFileFormat.scala ---------------------------------------------------------------------- diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/orc/OrcFileFormat.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/orc/OrcFileFormat.scala index 42c92ed..0a7631f 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/orc/OrcFileFormat.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/orc/OrcFileFormat.scala @@ -42,8 +42,8 @@ import org.apache.spark.sql.types.StructType import org.apache.spark.util.SerializableConfiguration /** - * [[FileFormat]] for reading ORC files. If this is moved or renamed, please update - * [[DataSource]]'s backwardCompatibilityMap. + * `FileFormat` for reading ORC files. If this is moved or renamed, please update + * `DataSource`'s backwardCompatibilityMap. */ class OrcFileFormat extends FileFormat with DataSourceRegister with Serializable { http://git-wip-us.apache.org/repos/asf/spark/blob/69856f28/sql/hive/src/main/scala/org/apache/spark/sql/hive/orc/OrcFileOperator.scala ---------------------------------------------------------------------- diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/orc/OrcFileOperator.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/orc/OrcFileOperator.scala index f5db73b..3f1f86c 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/orc/OrcFileOperator.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/orc/OrcFileOperator.scala @@ -38,7 +38,7 @@ private[orc] object OrcFileOperator extends Logging { * 1. Retrieving file metadata (schema and compression codecs, etc.) * 2. Read the actual file content (in this case, the given path should point to the target file) * - * @note As recorded by SPARK-8501, ORC writes an empty schema (<code>struct<></code) to an + * @note As recorded by SPARK-8501, ORC writes an empty schema (<code>struct<></code>) to an * ORC file if the file contains zero rows. This is OK for Hive since the schema of the * table is managed by metastore. But this becomes a problem when reading ORC files * directly from HDFS via Spark SQL, because we have to discover the schema from raw ORC --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org For additional commands, e-mail: commits-h...@spark.apache.org