Repository: spark
Updated Branches:
  refs/heads/master b28c3bc20 -> add9d1bba


[SPARK-19791][ML] Add doc and example for fpgrowth

## What changes were proposed in this pull request?

Add a new section for fpm
Add Example for FPGrowth in scala and Java

updated: Rewrite transform to be more compact.

## How was this patch tested?

local doc generation.

Author: Yuhao Yang <yuhao.y...@intel.com>

Closes #17130 from hhbyyh/fpmdoc.


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/add9d1bb
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/add9d1bb
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/add9d1bb

Branch: refs/heads/master
Commit: add9d1bba5cf33218a115428a03d3c76a514aa86
Parents: b28c3bc
Author: Yuhao Yang <yuhao.y...@intel.com>
Authored: Sat Apr 29 10:51:45 2017 -0700
Committer: Felix Cheung <felixche...@apache.org>
Committed: Sat Apr 29 10:51:45 2017 -0700

----------------------------------------------------------------------
 docs/_data/menu-ml.yaml                         |  2 +
 docs/ml-frequent-pattern-mining.md              | 87 ++++++++++++++++++++
 docs/mllib-frequent-pattern-mining.md           |  2 +-
 .../spark/examples/ml/JavaFPGrowthExample.java  | 77 +++++++++++++++++
 examples/src/main/python/ml/fpgrowth_example.py | 56 +++++++++++++
 .../spark/examples/ml/FPGrowthExample.scala     | 67 +++++++++++++++
 .../org/apache/spark/ml/fpm/FPGrowth.scala      | 35 ++++----
 .../org/apache/spark/ml/fpm/FPGrowthSuite.scala |  2 +
 8 files changed, 310 insertions(+), 18 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/add9d1bb/docs/_data/menu-ml.yaml
----------------------------------------------------------------------
diff --git a/docs/_data/menu-ml.yaml b/docs/_data/menu-ml.yaml
index 0c6b9b2..047423f 100644
--- a/docs/_data/menu-ml.yaml
+++ b/docs/_data/menu-ml.yaml
@@ -8,6 +8,8 @@
   url: ml-clustering.html
 - text: Collaborative filtering
   url: ml-collaborative-filtering.html
+- text: Frequent Pattern Mining
+  url: ml-frequent-pattern-mining.html
 - text: Model selection and tuning
   url: ml-tuning.html
 - text: Advanced topics

http://git-wip-us.apache.org/repos/asf/spark/blob/add9d1bb/docs/ml-frequent-pattern-mining.md
----------------------------------------------------------------------
diff --git a/docs/ml-frequent-pattern-mining.md 
b/docs/ml-frequent-pattern-mining.md
new file mode 100644
index 0000000..81634de
--- /dev/null
+++ b/docs/ml-frequent-pattern-mining.md
@@ -0,0 +1,87 @@
+---
+layout: global
+title: Frequent Pattern Mining
+displayTitle: Frequent Pattern Mining
+---
+
+Mining frequent items, itemsets, subsequences, or other substructures is 
usually among the
+first steps to analyze a large-scale dataset, which has been an active 
research topic in
+data mining for years.
+We refer users to Wikipedia's [association rule 
learning](http://en.wikipedia.org/wiki/Association_rule_learning)
+for more information.
+
+**Table of Contents**
+
+* This will become a table of contents (this text will be scraped).
+{:toc}
+
+## FP-Growth
+
+The FP-growth algorithm is described in the paper
+[Han et al., Mining frequent patterns without candidate 
generation](http://dx.doi.org/10.1145/335191.335372),
+where "FP" stands for frequent pattern.
+Given a dataset of transactions, the first step of FP-growth is to calculate 
item frequencies and identify frequent items.
+Different from [Apriori-like](http://en.wikipedia.org/wiki/Apriori_algorithm) 
algorithms designed for the same purpose,
+the second step of FP-growth uses a suffix tree (FP-tree) structure to encode 
transactions without generating candidate sets
+explicitly, which are usually expensive to generate.
+After the second step, the frequent itemsets can be extracted from the FP-tree.
+In `spark.mllib`, we implemented a parallel version of FP-growth called PFP,
+as described in [Li et al., PFP: Parallel FP-growth for query 
recommendation](http://dx.doi.org/10.1145/1454008.1454027).
+PFP distributes the work of growing FP-trees based on the suffixes of 
transactions,
+and hence is more scalable than a single-machine implementation.
+We refer users to the papers for more details.
+
+`spark.ml`'s FP-growth implementation takes the following (hyper-)parameters:
+
+* `minSupport`: the minimum support for an itemset to be identified as 
frequent.
+  For example, if an item appears 3 out of 5 transactions, it has a support of 
3/5=0.6.
+* `minConfidence`: minimum confidence for generating Association Rule. 
Confidence is an indication of how often an
+  association rule has been found to be true. For example, if in the 
transactions itemset `X` appears 4 times, `X`
+  and `Y` co-occur only 2 times, the confidence for the rule `X => Y` is then 
2/4 = 0.5. The parameter will not
+  affect the mining for frequent itemsets, but specify the minimum confidence 
for generating association rules
+  from frequent itemsets.
+* `numPartitions`: the number of partitions used to distribute the work. By 
default the param is not set, and
+  number of partitions of the input dataset is used.
+
+The `FPGrowthModel` provides:
+
+* `freqItemsets`: frequent itemsets in the format of DataFrame("items"[Array], 
"freq"[Long])
+* `associationRules`: association rules generated with confidence above 
`minConfidence`, in the format of 
+  DataFrame("antecedent"[Array], "consequent"[Array], "confidence"[Double]).
+* `transform`: For each transaction in `itemsCol`, the `transform` method will 
compare its items against the antecedents
+  of each association rule. If the record contains all the antecedents of a 
specific association rule, the rule
+  will be considered as applicable and its consequents will be added to the 
prediction result. The transform
+  method will summarize the consequents from all the applicable rules as 
prediction. The prediction column has
+  the same data type as `itemsCol` and does not contain existing items in the 
`itemsCol`.
+
+
+**Examples**
+
+<div class="codetabs">
+
+<div data-lang="scala" markdown="1">
+Refer to the [Scala API 
docs](api/scala/index.html#org.apache.spark.ml.fpm.FPGrowth) for more details.
+
+{% include_example scala/org/apache/spark/examples/ml/FPGrowthExample.scala %}
+</div>
+
+<div data-lang="java" markdown="1">
+Refer to the [Java API docs](api/java/org/apache/spark/ml/fpm/FPGrowth.html) 
for more details.
+
+{% include_example java/org/apache/spark/examples/ml/JavaFPGrowthExample.java 
%}
+</div>
+
+<div data-lang="python" markdown="1">
+Refer to the [Python API 
docs](api/python/pyspark.ml.html#pyspark.ml.fpm.FPGrowth) for more details.
+
+{% include_example python/ml/fpgrowth_example.py %}
+</div>
+
+<div data-lang="r" markdown="1">
+
+Refer to the [R API docs](api/R/spark.fpGrowth.html) for more details.
+
+{% include_example r/ml/fpm.R %}
+</div>
+
+</div>

http://git-wip-us.apache.org/repos/asf/spark/blob/add9d1bb/docs/mllib-frequent-pattern-mining.md
----------------------------------------------------------------------
diff --git a/docs/mllib-frequent-pattern-mining.md 
b/docs/mllib-frequent-pattern-mining.md
index 93e3f0b..c9cd7cc 100644
--- a/docs/mllib-frequent-pattern-mining.md
+++ b/docs/mllib-frequent-pattern-mining.md
@@ -24,7 +24,7 @@ explicitly, which are usually expensive to generate.
 After the second step, the frequent itemsets can be extracted from the FP-tree.
 In `spark.mllib`, we implemented a parallel version of FP-growth called PFP,
 as described in [Li et al., PFP: Parallel FP-growth for query 
recommendation](http://dx.doi.org/10.1145/1454008.1454027).
-PFP distributes the work of growing FP-trees based on the suffices of 
transactions,
+PFP distributes the work of growing FP-trees based on the suffixes of 
transactions,
 and hence more scalable than a single-machine implementation.
 We refer users to the papers for more details.
 

http://git-wip-us.apache.org/repos/asf/spark/blob/add9d1bb/examples/src/main/java/org/apache/spark/examples/ml/JavaFPGrowthExample.java
----------------------------------------------------------------------
diff --git 
a/examples/src/main/java/org/apache/spark/examples/ml/JavaFPGrowthExample.java 
b/examples/src/main/java/org/apache/spark/examples/ml/JavaFPGrowthExample.java
new file mode 100644
index 0000000..717ec21
--- /dev/null
+++ 
b/examples/src/main/java/org/apache/spark/examples/ml/JavaFPGrowthExample.java
@@ -0,0 +1,77 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.examples.ml;
+
+// $example on$
+import java.util.Arrays;
+import java.util.List;
+
+import org.apache.spark.ml.fpm.FPGrowth;
+import org.apache.spark.ml.fpm.FPGrowthModel;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Row;
+import org.apache.spark.sql.RowFactory;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.types.*;
+// $example off$
+
+/**
+ * An example demonstrating FPGrowth.
+ * Run with
+ * <pre>
+ * bin/run-example ml.JavaFPGrowthExample
+ * </pre>
+ */
+public class JavaFPGrowthExample {
+  public static void main(String[] args) {
+    SparkSession spark = SparkSession
+      .builder()
+      .appName("JavaFPGrowthExample")
+      .getOrCreate();
+
+    // $example on$
+    List<Row> data = Arrays.asList(
+      RowFactory.create(Arrays.asList("1 2 5".split(" "))),
+      RowFactory.create(Arrays.asList("1 2 3 5".split(" "))),
+      RowFactory.create(Arrays.asList("1 2".split(" ")))
+    );
+    StructType schema = new StructType(new StructField[]{ new StructField(
+      "items", new ArrayType(DataTypes.StringType, true), false, 
Metadata.empty())
+    });
+    Dataset<Row> itemsDF = spark.createDataFrame(data, schema);
+
+    FPGrowthModel model = new FPGrowth()
+      .setItemsCol("items")
+      .setMinSupport(0.5)
+      .setMinConfidence(0.6)
+      .fit(itemsDF);
+
+    // Display frequent itemsets.
+    model.freqItemsets().show();
+
+    // Display generated association rules.
+    model.associationRules().show();
+
+    // transform examines the input items against all the association rules 
and summarize the
+    // consequents as prediction
+    model.transform(itemsDF).show();
+    // $example off$
+
+    spark.stop();
+  }
+}

http://git-wip-us.apache.org/repos/asf/spark/blob/add9d1bb/examples/src/main/python/ml/fpgrowth_example.py
----------------------------------------------------------------------
diff --git a/examples/src/main/python/ml/fpgrowth_example.py 
b/examples/src/main/python/ml/fpgrowth_example.py
new file mode 100644
index 0000000..c92c3c2
--- /dev/null
+++ b/examples/src/main/python/ml/fpgrowth_example.py
@@ -0,0 +1,56 @@
+#
+# Licensed to the Apache Software Foundation (ASF) under one or more
+# contributor license agreements.  See the NOTICE file distributed with
+# this work for additional information regarding copyright ownership.
+# The ASF licenses this file to You under the Apache License, Version 2.0
+# (the "License"); you may not use this file except in compliance with
+# the License.  You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+# $example on$
+from pyspark.ml.fpm import FPGrowth
+# $example off$
+from pyspark.sql import SparkSession
+
+"""
+An example demonstrating FPGrowth.
+Run with:
+  bin/spark-submit examples/src/main/python/ml/fpgrowth_example.py
+"""
+
+if __name__ == "__main__":
+    spark = SparkSession\
+        .builder\
+        .appName("FPGrowthExample")\
+        .getOrCreate()
+
+    # $example on$
+    df = spark.createDataFrame([
+        (0, [1, 2, 5]),
+        (1, [1, 2, 3, 5]),
+        (2, [1, 2])
+    ], ["id", "items"])
+
+    fpGrowth = FPGrowth(itemsCol="items", minSupport=0.5, minConfidence=0.6)
+    model = fpGrowth.fit(df)
+
+    # Display frequent itemsets.
+    model.freqItemsets.show()
+
+    # Display generated association rules.
+    model.associationRules.show()
+
+    # transform examines the input items against all the association rules and 
summarize the
+    # consequents as prediction
+    model.transform(df).show()
+    # $example off$
+
+    spark.stop()

http://git-wip-us.apache.org/repos/asf/spark/blob/add9d1bb/examples/src/main/scala/org/apache/spark/examples/ml/FPGrowthExample.scala
----------------------------------------------------------------------
diff --git 
a/examples/src/main/scala/org/apache/spark/examples/ml/FPGrowthExample.scala 
b/examples/src/main/scala/org/apache/spark/examples/ml/FPGrowthExample.scala
new file mode 100644
index 0000000..59110d7
--- /dev/null
+++ b/examples/src/main/scala/org/apache/spark/examples/ml/FPGrowthExample.scala
@@ -0,0 +1,67 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.examples.ml
+
+// scalastyle:off println
+
+// $example on$
+import org.apache.spark.ml.fpm.FPGrowth
+// $example off$
+import org.apache.spark.sql.SparkSession
+
+/**
+ * An example demonstrating FP-Growth.
+ * Run with
+ * {{{
+ * bin/run-example ml.FPGrowthExample
+ * }}}
+ */
+object FPGrowthExample {
+
+  def main(args: Array[String]): Unit = {
+    val spark = SparkSession
+      .builder
+      .appName(s"${this.getClass.getSimpleName}")
+      .getOrCreate()
+    import spark.implicits._
+
+    // $example on$
+    val dataset = spark.createDataset(Seq(
+      "1 2 5",
+      "1 2 3 5",
+      "1 2")
+    ).map(t => t.split(" ")).toDF("items")
+
+    val fpgrowth = new 
FPGrowth().setItemsCol("items").setMinSupport(0.5).setMinConfidence(0.6)
+    val model = fpgrowth.fit(dataset)
+
+    // Display frequent itemsets.
+    model.freqItemsets.show()
+
+    // Display generated association rules.
+    model.associationRules.show()
+
+    // transform examines the input items against all the association rules 
and summarize the
+    // consequents as prediction
+    model.transform(dataset).show()
+    // $example off$
+
+    spark.stop()
+  }
+}
+// scalastyle:on println

http://git-wip-us.apache.org/repos/asf/spark/blob/add9d1bb/mllib/src/main/scala/org/apache/spark/ml/fpm/FPGrowth.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/fpm/FPGrowth.scala 
b/mllib/src/main/scala/org/apache/spark/ml/fpm/FPGrowth.scala
index d604c1a..8f00daa 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/fpm/FPGrowth.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/fpm/FPGrowth.scala
@@ -17,7 +17,6 @@
 
 package org.apache.spark.ml.fpm
 
-import scala.collection.mutable.ArrayBuffer
 import scala.reflect.ClassTag
 
 import org.apache.hadoop.fs.Path
@@ -54,7 +53,7 @@ private[fpm] trait FPGrowthParams extends Params with 
HasPredictionCol {
 
   /**
    * Minimal support level of the frequent pattern. [0.0, 1.0]. Any pattern 
that appears
-   * more than (minSupport * size-of-the-dataset) times will be output
+   * more than (minSupport * size-of-the-dataset) times will be output in the 
frequent itemsets.
    * Default: 0.3
    * @group param
    */
@@ -82,8 +81,8 @@ private[fpm] trait FPGrowthParams extends Params with 
HasPredictionCol {
   def getNumPartitions: Int = $(numPartitions)
 
   /**
-   * Minimal confidence for generating Association Rule.
-   * Note that minConfidence has no effect during fitting.
+   * Minimal confidence for generating Association Rule. minConfidence will 
not affect the mining
+   * for frequent itemsets, but will affect the association rules generation.
    * Default: 0.8
    * @group param
    */
@@ -118,7 +117,7 @@ private[fpm] trait FPGrowthParams extends Params with 
HasPredictionCol {
  * Recommendation</a>. PFP distributes computation in such a way that each 
worker executes an
  * independent group of mining tasks. The FP-Growth algorithm is described in
  * <a href="http://dx.doi.org/10.1145/335191.335372";>Han et al., Mining 
frequent patterns without
- * candidate generation</a>. Note null values in the feature column are 
ignored during fit().
+ * candidate generation</a>. Note null values in the itemsCol column are 
ignored during fit().
  *
  * @see <a href="http://en.wikipedia.org/wiki/Association_rule_learning";>
  * Association rule learning (Wikipedia)</a>
@@ -167,7 +166,6 @@ class FPGrowth @Since("2.2.0") (
     }
     val parentModel = mllibFP.run(items)
     val rows = parentModel.freqItemsets.map(f => Row(f.items, f.freq))
-
     val schema = StructType(Seq(
       StructField("items", dataset.schema($(itemsCol)).dataType, nullable = 
false),
       StructField("freq", LongType, nullable = false)))
@@ -196,7 +194,7 @@ object FPGrowth extends DefaultParamsReadable[FPGrowth] {
  * :: Experimental ::
  * Model fitted by FPGrowth.
  *
- * @param freqItemsets frequent items in the format of DataFrame("items"[Seq], 
"freq"[Long])
+ * @param freqItemsets frequent itemsets in the format of 
DataFrame("items"[Array], "freq"[Long])
  */
 @Since("2.2.0")
 @Experimental
@@ -244,10 +242,13 @@ class FPGrowthModel private[ml] (
 
   /**
    * The transform method first generates the association rules according to 
the frequent itemsets.
-   * Then for each association rule, it will examine the input items against 
antecedents and
-   * summarize the consequents as prediction. The prediction column has the 
same data type as the
-   * input column(Array[T]) and will not contain existing items in the input 
column. The null
-   * values in the feature columns are treated as empty sets.
+   * Then for each transaction in itemsCol, the transform method will compare 
its items against the
+   * antecedents of each association rule. If the record contains all the 
antecedents of a
+   * specific association rule, the rule will be considered as applicable and 
its consequents
+   * will be added to the prediction result. The transform method will 
summarize the consequents
+   * from all the applicable rules as prediction. The prediction column has 
the same data type as
+   * the input column(Array[T]) and will not contain existing items in the 
input column. The null
+   * values in the itemsCol columns are treated as empty sets.
    * WARNING: internally it collects association rules to the driver and uses 
broadcast for
    * efficiency. This may bring pressure to driver memory for large set of 
association rules.
    */
@@ -335,13 +336,13 @@ private[fpm] object AssociationRules {
 
   /**
    * Computes the association rules with confidence above minConfidence.
-   * @param dataset DataFrame("items", "freq") containing frequent itemset 
obtained from
-   *                algorithms like [[FPGrowth]].
+   * @param dataset DataFrame("items"[Array], "freq"[Long]) containing 
frequent itemsets obtained
+   *                from algorithms like [[FPGrowth]].
    * @param itemsCol column name for frequent itemsets
-   * @param freqCol column name for frequent itemsets count
-   * @param minConfidence minimum confidence for the result association rules
-   * @return a DataFrame("antecedent", "consequent", "confidence") containing 
the association
-   *         rules.
+   * @param freqCol column name for appearance count of the frequent itemsets
+   * @param minConfidence minimum confidence for generating the association 
rules
+   * @return a DataFrame("antecedent"[Array], "consequent"[Array], 
"confidence"[Double])
+   *         containing the association rules.
    */
   def getAssociationRulesFromFP[T: ClassTag](
         dataset: Dataset[_],

http://git-wip-us.apache.org/repos/asf/spark/blob/add9d1bb/mllib/src/test/scala/org/apache/spark/ml/fpm/FPGrowthSuite.scala
----------------------------------------------------------------------
diff --git a/mllib/src/test/scala/org/apache/spark/ml/fpm/FPGrowthSuite.scala 
b/mllib/src/test/scala/org/apache/spark/ml/fpm/FPGrowthSuite.scala
index 6806cb0..87f8b90 100644
--- a/mllib/src/test/scala/org/apache/spark/ml/fpm/FPGrowthSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/ml/fpm/FPGrowthSuite.scala
@@ -122,6 +122,8 @@ class FPGrowthSuite extends SparkFunSuite with 
MLlibTestSparkContext with Defaul
       .setMinConfidence(0.5678)
     assert(fpGrowth.getMinSupport === 0.4567)
     assert(model.getMinConfidence === 0.5678)
+    // numPartitions should not have default value.
+    assert(fpGrowth.isDefined(fpGrowth.numPartitions) === false)
     MLTestingUtils.checkCopyAndUids(fpGrowth, model)
     ParamsSuite.checkParams(fpGrowth)
     ParamsSuite.checkParams(model)


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org
For additional commands, e-mail: commits-h...@spark.apache.org

Reply via email to