This is an automated email from the ASF dual-hosted git repository.
mboehm7 pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/systemds.git
The following commit(s) were added to refs/heads/master by this push:
new 527e47d [MINOR] Fix multiLogRegPredict (sanity check matching dims,
cleanup)
527e47d is described below
commit 527e47d7ac4d594020c0ac508a2ceae03048429a
Author: Matthias Boehm <[email protected]>
AuthorDate: Fri Jan 29 13:55:41 2021 +0100
[MINOR] Fix multiLogRegPredict (sanity check matching dims, cleanup)
---
scripts/builtin/multiLogRegPredict.dml | 33 ++++++++++++---------------------
1 file changed, 12 insertions(+), 21 deletions(-)
diff --git a/scripts/builtin/multiLogRegPredict.dml
b/scripts/builtin/multiLogRegPredict.dml
index 213f7dd..3756420 100644
--- a/scripts/builtin/multiLogRegPredict.dml
+++ b/scripts/builtin/multiLogRegPredict.dml
@@ -40,39 +40,32 @@
# accuracy Double --- scalar value of accuracy
#
---------------------------------------------------------------------------------------------
-
m_multiLogRegPredict = function(Matrix[Double] X, Matrix[Double] B,
Matrix[Double] Y, Boolean verbose = FALSE)
-return(Matrix[Double] M, Matrix[Double] predicted_Y, Double accuracy)
-{
+ return(Matrix[Double] M, Matrix[Double] predicted_Y, Double accuracy)
+{
if(min(Y) <= 0)
- stop("class labels should be greater than zero")
-
- num_records = nrow(X);
- num_features = ncol(X);
- beta = B[1:ncol(X), ];
- intercept = B[nrow(B), ];
-
- if (nrow(B) == ncol(X))
- intercept = 0.0 * intercept;
- else
- num_features = num_features + 1;
+ stop("multiLogRegPredict: class labels should be greater than zero")
+ if(ncol(X) < nrow(B)-1)
+ stop("multiLogRegPredict: mismatching ncol(X) and nrow(B): "+ncol(X)+"
"+nrow(B));
- ones_rec = matrix(1, rows = num_records, cols = 1);
- linear_terms = X %*% beta + ones_rec %*% intercept;
+ beta = B[1:ncol(X), ];
+ intercept = ifelse(ncol(X)==nrow(B), matrix(0,1,ncol(B)), B[nrow(B),]);
+ linear_terms = X %*% beta + matrix(1,nrow(X),1) %*% intercept;
M = probabilities(linear_terms); # compute the probablitites on unknown data
predicted_Y = rowIndexMax(M); # extract the class labels
if(nrow(Y) != 0)
- accuracy = sum((predicted_Y - Y) == 0) / num_records * 100;
+ accuracy = sum((predicted_Y - Y) == 0) / nrow(Y) * 100;
if(verbose)
print("Accuracy (%): " + accuracy);
}
probabilities = function (Matrix[double] linear_terms)
- return (Matrix[double] means) {
- # PROBABLITIES FOR MULTINOMIAL LOGIT DISTRIBUTION
+ return (Matrix[double] means)
+{
+ # PROBABLITIES FOR MULTINOMIAL LOGIT DISTRIBUTION
num_points = nrow (linear_terms);
elt = exp (linear_terms);
ones_pts = matrix (1, rows = num_points, cols = 1);
@@ -80,5 +73,3 @@ probabilities = function (Matrix[double] linear_terms)
ones_ctg = matrix (1, rows = ncol (elt), cols = 1);
means = elt / (rowSums (elt) %*% t(ones_ctg));
}
-
-