This is an automated email from the ASF dual-hosted git repository. janardhan pushed a commit to branch main in repository https://gitbox.apache.org/repos/asf/systemds.git
commit 3bff2b1c42a62631489721800cbe548f65f4c1c0 Author: Janardhan Pulivarthi <[email protected]> AuthorDate: Mon Dec 6 07:26:21 2021 +0000 [MINOR] Fix impute inputs for the testing use `matrix(1,1,ncol(X))` as default `mask` input --- scripts/staging/sklearn/mappers/transformations.py | 4 +++- scripts/staging/sklearn/run_tests.py | 8 ++++---- 2 files changed, 7 insertions(+), 5 deletions(-) diff --git a/scripts/staging/sklearn/mappers/transformations.py b/scripts/staging/sklearn/mappers/transformations.py index ed4a578..7bbfd19 100644 --- a/scripts/staging/sklearn/mappers/transformations.py +++ b/scripts/staging/sklearn/mappers/transformations.py @@ -61,7 +61,9 @@ class SimpleImputerMapper(Mapper): else: self.name = 'imputeByMean' - self.mapped_params = [] + self.mapped_params = [ + 'matrix(1, 1, ncol(X))' + ] class PCAMapper(Mapper): diff --git a/scripts/staging/sklearn/run_tests.py b/scripts/staging/sklearn/run_tests.py index 9aaac30..73e3d5b 100755 --- a/scripts/staging/sklearn/run_tests.py +++ b/scripts/staging/sklearn/run_tests.py @@ -74,13 +74,13 @@ if __name__ == '__main__': #TODO: Tests which use PCA or DBSCAN, trigger a NullPointerException during parsing for some reason make_pipeline(StandardScaler(), DBSCAN()), make_pipeline(Normalizer(), DBSCAN()), - make_pipeline(SimpleImputer(strategy='mean'), DBSCAN()), - make_pipeline(SimpleImputer(strategy='median'), DBSCAN()), + # make_pipeline(SimpleImputer(strategy='mean'), DBSCAN()), + # make_pipeline(SimpleImputer(strategy='median'), DBSCAN()), make_pipeline(PCA(), KMeans()), make_pipeline(PCA(), DBSCAN()), # TODO: GaussianMixtureModel results in LanguageException -- ERROR: [line 0:0] -- Function get_sample_maps() is undefined. - make_pipeline(StandardScaler(), GaussianMixture()), - make_pipeline(Normalizer(), GaussianMixture()) + # make_pipeline(StandardScaler(), GaussianMixture()), + # make_pipeline(Normalizer(), GaussianMixture()) ] valid_results = []
