This is an automated email from the ASF dual-hosted git repository.

baunsgaard pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/systemds.git


The following commit(s) were added to refs/heads/main by this push:
     new a83a17acbf [MINOR] Python set log4j
a83a17acbf is described below

commit a83a17acbfd44d7c5ba4de1a318e2a50f7d7628d
Author: Sebastian Baunsgaard <[email protected]>
AuthorDate: Fri Jan 5 18:16:32 2024 +0100

    [MINOR] Python set log4j
---
 .github/workflows/python.yml                       |  2 ++
 .../python/systemds/operator/algorithm/__init__.py |  6 +++++
 .../systemds/operator/algorithm/builtin/auc.py     |  2 +-
 .../builtin/{auc.py => img_rotate_linearized.py}   | 27 +++++++++++---------
 .../{auc.py => img_sample_pairing_linearized.py}   | 25 ++++++++++---------
 .../builtin/{auc.py => img_shear_linearized.py}    | 29 +++++++++++++---------
 6 files changed, 54 insertions(+), 37 deletions(-)

diff --git a/.github/workflows/python.yml b/.github/workflows/python.yml
index 8b345cf79d..6e56dc812e 100644
--- a/.github/workflows/python.yml
+++ b/.github/workflows/python.yml
@@ -112,6 +112,7 @@ jobs:
         export SYSTEMDS_ROOT=$(pwd)
         export PATH=$SYSTEMDS_ROOT/bin:$PATH
         export SYSDS_QUIET=1
+        export LOG4JPROP=$SYSTEMDS_ROOT/src/test/resources/log4j.properties
         cd src/main/python
         unittest-parallel -t . -s tests
         # python -m unittest discover -s tests -p 'test_*.py'
@@ -119,6 +120,7 @@ jobs:
     
     - name: Run all python tests no environment
       run: |
+        export LOG4JPROP=$(pwd)/src/test/resources/log4j.properties
         cd src/main/python
         unittest-parallel -t . -s tests
         # python -m unittest discover -s tests -p 'test_*.py'
diff --git a/src/main/python/systemds/operator/algorithm/__init__.py 
b/src/main/python/systemds/operator/algorithm/__init__.py
index 52c470d201..690bfe07e8 100644
--- a/src/main/python/systemds/operator/algorithm/__init__.py
+++ b/src/main/python/systemds/operator/algorithm/__init__.py
@@ -90,8 +90,11 @@ from .builtin.img_mirror_linearized import 
img_mirror_linearized
 from .builtin.img_posterize import img_posterize 
 from .builtin.img_posterize_linearized import img_posterize_linearized 
 from .builtin.img_rotate import img_rotate 
+from .builtin.img_rotate_linearized import img_rotate_linearized 
 from .builtin.img_sample_pairing import img_sample_pairing 
+from .builtin.img_sample_pairing_linearized import 
img_sample_pairing_linearized 
 from .builtin.img_shear import img_shear 
+from .builtin.img_shear_linearized import img_shear_linearized 
 from .builtin.img_transform import img_transform 
 from .builtin.img_transform_linearized import img_transform_linearized 
 from .builtin.img_translate import img_translate 
@@ -263,8 +266,11 @@ __all__ = ['WoE',
  'img_posterize',
  'img_posterize_linearized',
  'img_rotate',
+ 'img_rotate_linearized',
  'img_sample_pairing',
+ 'img_sample_pairing_linearized',
  'img_shear',
+ 'img_shear_linearized',
  'img_transform',
  'img_transform_linearized',
  'img_translate',
diff --git a/src/main/python/systemds/operator/algorithm/builtin/auc.py 
b/src/main/python/systemds/operator/algorithm/builtin/auc.py
index 8df6835311..b5b3b67e7d 100644
--- a/src/main/python/systemds/operator/algorithm/builtin/auc.py
+++ b/src/main/python/systemds/operator/algorithm/builtin/auc.py
@@ -32,7 +32,7 @@ from systemds.utils.consts import VALID_INPUT_TYPES
 def auc(Y: Matrix,
         P: Matrix):
     """
-     This builting function computes the area under the ROC curve (AUC)
+     This builtin function computes the area under the ROC curve (AUC)
      for binary classifiers.
     
     
diff --git a/src/main/python/systemds/operator/algorithm/builtin/auc.py 
b/src/main/python/systemds/operator/algorithm/builtin/img_rotate_linearized.py
similarity index 58%
copy from src/main/python/systemds/operator/algorithm/builtin/auc.py
copy to 
src/main/python/systemds/operator/algorithm/builtin/img_rotate_linearized.py
index 8df6835311..f3698c93dd 100644
--- a/src/main/python/systemds/operator/algorithm/builtin/auc.py
+++ 
b/src/main/python/systemds/operator/algorithm/builtin/img_rotate_linearized.py
@@ -20,7 +20,7 @@
 # -------------------------------------------------------------
 
 # Autogenerated By   : src/main/python/generator/generator.py
-# Autogenerated From : scripts/builtin/auc.dml
+# Autogenerated From : scripts/builtin/img_rotate_linearized.dml
 
 from typing import Dict, Iterable
 
@@ -29,21 +29,24 @@ from systemds.script_building.dag import OutputType
 from systemds.utils.consts import VALID_INPUT_TYPES
 
 
-def auc(Y: Matrix,
-        P: Matrix):
+def img_rotate_linearized(img_in: Matrix,
+                          radians: float,
+                          fill_value: float,
+                          s_cols: int,
+                          s_rows: int):
     """
-     This builting function computes the area under the ROC curve (AUC)
-     for binary classifiers.
+     The Linearized Image Rotate function rotates the linearized input images 
counter-clockwise around the center.
+     Uses nearest neighbor sampling.
     
     
     
-    :param Y: Binary response vector (shape: n x 1), in -1/+1 or 0/1 encoding
-    :param P: Prediction scores (predictor such as estimated probabilities)
-        for true class (shape: n x 1), assumed in [0,1]
-    :return: Area under the ROC curve (AUC)
+    :param img_in: Linearized input images as 2D matrix with top left corner 
at [1, 1]
+    :param radians: The value by which to rotate in radian.
+    :param fill_value: The background color revealed by the rotation
+    :return: Output images in linearized form as 2D matrix with top left 
corner at [1, 1]
     """
 
-    params_dict = {'Y': Y, 'P': P}
-    return Matrix(Y.sds_context,
-        'auc',
+    params_dict = {'img_in': img_in, 'radians': radians, 'fill_value': 
fill_value, 's_cols': s_cols, 's_rows': s_rows}
+    return Matrix(img_in.sds_context,
+        'img_rotate_linearized',
         named_input_nodes=params_dict)
diff --git a/src/main/python/systemds/operator/algorithm/builtin/auc.py 
b/src/main/python/systemds/operator/algorithm/builtin/img_sample_pairing_linearized.py
similarity index 62%
copy from src/main/python/systemds/operator/algorithm/builtin/auc.py
copy to 
src/main/python/systemds/operator/algorithm/builtin/img_sample_pairing_linearized.py
index 8df6835311..218e548048 100644
--- a/src/main/python/systemds/operator/algorithm/builtin/auc.py
+++ 
b/src/main/python/systemds/operator/algorithm/builtin/img_sample_pairing_linearized.py
@@ -20,7 +20,7 @@
 # -------------------------------------------------------------
 
 # Autogenerated By   : src/main/python/generator/generator.py
-# Autogenerated From : scripts/builtin/auc.dml
+# Autogenerated From : scripts/builtin/img_sample_pairing_linearized.dml
 
 from typing import Dict, Iterable
 
@@ -29,21 +29,22 @@ from systemds.script_building.dag import OutputType
 from systemds.utils.consts import VALID_INPUT_TYPES
 
 
-def auc(Y: Matrix,
-        P: Matrix):
+def img_sample_pairing_linearized(img_in1: Matrix,
+                                  img_in2: Matrix,
+                                  weight: float):
     """
-     This builting function computes the area under the ROC curve (AUC)
-     for binary classifiers.
+     The image sample pairing function blends two images together.
     
     
     
-    :param Y: Binary response vector (shape: n x 1), in -1/+1 or 0/1 encoding
-    :param P: Prediction scores (predictor such as estimated probabilities)
-        for true class (shape: n x 1), assumed in [0,1]
-    :return: Area under the ROC curve (AUC)
+    :param img_in1: input matrix/image (every row is a linearized image)
+    :param img_in2: Second input image (one image represented as a single row 
linearized matrix)
+    :param weight: The weight given to the second image.
+        0 means only img_in1, 1 means only img_in2 will be visible
+    :return: Output image
     """
 
-    params_dict = {'Y': Y, 'P': P}
-    return Matrix(Y.sds_context,
-        'auc',
+    params_dict = {'img_in1': img_in1, 'img_in2': img_in2, 'weight': weight}
+    return Matrix(img_in1.sds_context,
+        'img_sample_pairing_linearized',
         named_input_nodes=params_dict)
diff --git a/src/main/python/systemds/operator/algorithm/builtin/auc.py 
b/src/main/python/systemds/operator/algorithm/builtin/img_shear_linearized.py
similarity index 56%
copy from src/main/python/systemds/operator/algorithm/builtin/auc.py
copy to 
src/main/python/systemds/operator/algorithm/builtin/img_shear_linearized.py
index 8df6835311..94cc010384 100644
--- a/src/main/python/systemds/operator/algorithm/builtin/auc.py
+++ 
b/src/main/python/systemds/operator/algorithm/builtin/img_shear_linearized.py
@@ -20,7 +20,7 @@
 # -------------------------------------------------------------
 
 # Autogenerated By   : src/main/python/generator/generator.py
-# Autogenerated From : scripts/builtin/auc.dml
+# Autogenerated From : scripts/builtin/img_shear_linearized.dml
 
 from typing import Dict, Iterable
 
@@ -29,21 +29,26 @@ from systemds.script_building.dag import OutputType
 from systemds.utils.consts import VALID_INPUT_TYPES
 
 
-def auc(Y: Matrix,
-        P: Matrix):
+def img_shear_linearized(img_in: Matrix,
+                         shear_x: float,
+                         shear_y: float,
+                         fill_value: float,
+                         s_cols: int,
+                         s_rows: int):
     """
-     This builting function computes the area under the ROC curve (AUC)
-     for binary classifiers.
+     This function applies a shearing transformation to linearized images.
+     Uses nearest neighbor sampling.
     
     
     
-    :param Y: Binary response vector (shape: n x 1), in -1/+1 or 0/1 encoding
-    :param P: Prediction scores (predictor such as estimated probabilities)
-        for true class (shape: n x 1), assumed in [0,1]
-    :return: Area under the ROC curve (AUC)
+    :param img_in: Linearized input images as 2D matrix with top left corner 
at [1, 1]
+    :param shear_x: Shearing factor for horizontal shearing
+    :param shear_y: Shearing factor for vertical shearing
+    :param fill_value: The background color revealed by the shearing
+    :return: Output images in linearized form as 2D matrix with top left 
corner at [1, 1]
     """
 
-    params_dict = {'Y': Y, 'P': P}
-    return Matrix(Y.sds_context,
-        'auc',
+    params_dict = {'img_in': img_in, 'shear_x': shear_x, 'shear_y': shear_y, 
'fill_value': fill_value, 's_cols': s_cols, 's_rows': s_rows}
+    return Matrix(img_in.sds_context,
+        'img_shear_linearized',
         named_input_nodes=params_dict)

Reply via email to