Cookiee235 opened a new issue, #17248: URL: https://github.com/apache/tvm/issues/17248
### Actual behavior Giving the same inputs, the compiled model on CUDA can achieve about **1x ~14x faster** than inference on CPU. Does the huge time cost difference between LLVM and CUDA represent a performance buy? ### Steps to reproduce ``` import tvm from tvm import relax import numpy as np import time from tvm.script import ir as I from tvm.script import tir as T from tvm.script import relax as R @I.ir_module class Module: @T.prim_func(private=True) def cast(v0_0: T.Buffer((T.int64(1),), "int32"), compute: T.Buffer((T.int64(1),), "float64")): T.func_attr({"tir.noalias": T.bool(True)}) # with T.block("root"): for i0 in range(T.int64(1)): with T.block("compute"): v_i0 = T.axis.spatial(T.int64(1), i0) T.reads(v0_0[v_i0]) T.writes(compute[v_i0]) compute[v_i0] = T.Cast("float64", v0_0[v_i0]) @T.prim_func(private=True) def less(v1_0: T.Buffer((T.int64(42),), "int32"), v1_0_1: T.Buffer((T.int64(42),), "int32"), T_less: T.Buffer((T.int64(42),), "bool")): T.func_attr({"tir.noalias": T.bool(True)}) # with T.block("root"): for ax0 in range(T.int64(42)): with T.block("T_less"): v_ax0 = T.axis.spatial(T.int64(42), ax0) T.reads(v1_0[v_ax0], v1_0_1[v_ax0]) T.writes(T_less[v_ax0]) T_less[v_ax0] = v1_0[v_ax0] < v1_0_1[v_ax0] @T.prim_func(private=True) def multiply(v1_0: T.Buffer((T.int64(42),), "int32"), lv: T.Buffer((T.int64(1),), "int32"), T_multiply: T.Buffer((T.int64(42),), "int32")): T.func_attr({"tir.noalias": T.bool(True)}) # with T.block("root"): for ax0 in range(T.int64(42)): with T.block("T_multiply"): v_ax0 = T.axis.spatial(T.int64(42), ax0) T.reads(v1_0[v_ax0], lv[T.int64(0)]) T.writes(T_multiply[v_ax0]) T_multiply[v_ax0] = v1_0[v_ax0] * lv[T.int64(0)] @T.prim_func(private=True) def tir_negative(v0_0: T.Buffer((T.int64(1),), "int32"), compute: T.Buffer((T.int64(1),), "int32")): T.func_attr({"tir.noalias": T.bool(True)}) # with T.block("root"): for i0 in range(T.int64(1)): with T.block("compute"): v_i0 = T.axis.spatial(T.int64(1), i0) T.reads(v0_0[v_i0]) T.writes(compute[v_i0]) compute[v_i0] = v0_0[v_i0] * -1 @R.function def main(v0_0: R.Tensor((1,), dtype="int32"), v1_0: R.Tensor((42,), dtype="int32")) -> R.Tuple(R.Tensor((1,), dtype="float64"), R.Tensor((42,), dtype="bool"), R.Tensor((42,), dtype="int32")): R.func_attr({"num_input": 2}) cls = Module with R.dataflow(): lv = R.call_tir(cls.tir_negative, (v0_0,), out_sinfo=R.Tensor((1,), dtype="int32")) lv1 = R.call_tir(cls.cast, (v0_0,), out_sinfo=R.Tensor((1,), dtype="float64")) lv2 = R.call_tir(cls.less, (v1_0, v1_0), out_sinfo=R.Tensor((42,), dtype="bool")) lv3 = R.call_tir(cls.multiply, (v1_0, lv), out_sinfo=R.Tensor((42,), dtype="int32")) gv: R.Tuple(R.Tensor((1,), dtype="float64"), R.Tensor((42,), dtype="bool"), R.Tensor((42,), dtype="int32")) = lv1, lv2, lv3 R.output(gv) return gv mod = Module def compile_mod(mod, func_name, target, *inputs): if target == 'llvm': ex = relax.build(mod, target='llvm') vm = relax.VirtualMachine(ex, tvm.cpu()) else: with tvm.target.Target("cuda"): mod = tvm.tir.transform.DefaultGPUSchedule()(mod) ex = relax.build(mod, target='cuda') vm = relax.VirtualMachine(ex, tvm.gpu()) start_time = time.perf_counter() mod_outputs = vm[f'{func_name}'](*inputs) end_time = time.perf_counter() infer_time = end_time - start_time return infer_time input_0 = tvm.nd.array(np.random.randint(10, size=[1]).astype('int32')) input_1 = tvm.nd.array(np.random.randint(10, size=[42]).astype('int32')) infer_time1 = compile_mod(mod, 'main', 'llvm', input_0,input_1,) infer_time2 = compile_mod(mod, 'main', 'cuda', tvm.nd.array(input_0, tvm.cuda()), tvm.nd.array(input_1, tvm.cuda()),) print(f"A performance bug that slower {(infer_time2-infer_time1)/infer_time1} after optimization.") ``` cc @Lunderberg @junrushao -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: commits-unsubscr...@tvm.apache.org.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org