coffezhou opened a new issue, #17873:
URL: https://github.com/apache/tvm/issues/17873
### Expected behavior
TVM should compile the model correctly with the CUDA backend.
### Actual behavior
When compiling the model with the CUDA backend, TVM crashes as follows:
```c
Traceback (most recent call last):
File "/home/carla/Documents/test/test.py", line 43, in <module>
main()
File "/home/carla/Documents/test/test.py", line 40, in main
tvm_model = tvm.tir.transform.DefaultGPUSchedule()(tvm_model)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/carla/Documents/tvm/python/tvm/ir/transform.py", line 238, in
__call__
return _ffi_transform_api.RunPass(self, mod)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "tvm/_ffi/_cython/./packed_func.pxi", line 339, in
tvm._ffi._cy3.core.PackedFuncBase.__call__
File "tvm/_ffi/_cython/./packed_func.pxi", line 270, in
tvm._ffi._cy3.core.FuncCall
File "tvm/_ffi/_cython/./packed_func.pxi", line 259, in
tvm._ffi._cy3.core.FuncCall3
File "tvm/_ffi/_cython/./base.pxi", line 185, in
tvm._ffi._cy3.core.CHECK_CALL
File "/home/carla/Documents/tvm/python/tvm/_ffi/base.py", line 468, in
raise_last_ffi_error
raise py_err
ValueError: Traceback (most recent call last):
9:
tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::IRModule
(tvm::transform::Pass,
tvm::IRModule)>::AssignTypedLambda<tvm::transform::{lambda(tvm::transform::Pass,
tvm::IRModule)#7}>(tvm::transform::{lambda(tvm::transform::Pass,
tvm::IRModule)#7}, std::__cxx11::basic_string<char, std::char_traits<char>,
std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&,
tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*,
tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
8: tvm::transform::Pass::operator()(tvm::IRModule) const
7: tvm::transform::Pass::operator()(tvm::IRModule,
tvm::transform::PassContext const&) const
6: tvm::transform::ModulePassNode::operator()(tvm::IRModule,
tvm::transform::PassContext const&) const
5:
tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::IRModule
(tvm::IRModule,
tvm::transform::PassContext)>::AssignTypedLambda<tvm::tir::transform::DefaultGPUSchedule()::{lambda(tvm::IRModule,
tvm::transform::PassContext)#1}>(tvm::tir::transform::DefaultGPUSchedule()::{lambda(tvm::IRModule,
tvm::transform::PassContext)#1})::{lambda(tvm::runtime::TVMArgs const&,
tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*,
tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
4: tvm::tir::transform::DefaultGPUSchedule()::{lambda(tvm::IRModule,
tvm::transform::PassContext)#1}::operator()(tvm::IRModule,
tvm::transform::PassContext) const [clone .isra.0]
3: tvm::tir::transform::ThreadBind(tvm::tir::Schedule, tvm::tir::BlockRV
const&, long, long)
2: tvm::tir::TracedScheduleNode::AddUnitLoop(tvm::tir::BlockRV const&)
1: tvm::tir::ConcreteScheduleNode::AddUnitLoop(tvm::tir::BlockRV const&)
0: tvm::tir::AddUnitLoop(tvm::tir::ScheduleState, tvm::tir::StmtSRef)
File
"/home/carla/Documents/tvm/src/tir/schedule/primitive/loop_transformation.cc",
line 1153
ValueError: Check failed: (sref->parent != nullptr) is false: Cannot add
loops on top of the root block
```
### Environment
OS: Ubuntu 20.04
TVM: 0.21.dev0(c00f52a70)
### Steps to reproduce
This bug can be reproduced by the following code with the model in the
attachment. As shown in the code, the model can be executed by onnxruntime and
also be compiled by tvm with cpu backend. However, tvm failed to compile this
model with CUDA backend.
```python
import sys
import numpy as np
import onnx
import onnxruntime
import tvm
from tvm import relax
from tvm.relax.frontend.onnx import from_onnx
import argparse
import pickle
def main():
onnx_model = onnx.load("a2.onnx")
with open("inputs.pkl", "rb") as fp:
inputs = pickle.load(fp)
try:
ort_session = onnxruntime.InferenceSession(
onnx_model.SerializeToString(),
providers=["CPUExecutionProvider"]
)
ort_output = ort_session.run([], inputs)
except Exception as e:
print(e)
sys.exit(1)
# Convert the onnx model into relax through the onnx importer.
tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
# Convert operators for inference mode.
tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
# Legalize any relax ops into tensorir.
tvm_model = relax.transform.LegalizeOps()(tvm_model)
# Separate model from parameters.
tvm_model, params = relax.frontend.detach_params(tvm_model)
# Prepare inputs.
input_list = [
inputs[key.name_hint] for key in tvm_model["main"].params if
key.name_hint in inputs
]
if params:
input_list += params["main"]
# Compile the relax graph into a VM then run.
#----------------------cpu-----------------------
with tvm.transform.PassContext(opt_level=3):
target = tvm.target.Target("llvm", host="llvm")
relax_pipeline = relax.pipeline.get_default_pipeline(target)
ex = relax.build(tvm_model, target="llvm",
relax_pipeline=relax_pipeline)
vm = relax.VirtualMachine(ex, tvm.cpu())
# Run model and check outputs.
vm.set_input("main", *input_list)
vm.invoke_stateful("main")
tvm_cpu_output = vm.get_outputs("main")
#----------------------cpu-----------------------
#----------------------cuda-----------------------
with tvm.target.Target("cuda"):
tvm_model = tvm.tir.transform.DefaultGPUSchedule()(tvm_model)
#----------------------cuda-----------------------
if __name__ == "__main__":
main()
```
[testcase.zip](https://github.com/user-attachments/files/19844214/testcase.zip)
### Triage
* needs-triage
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]