coffezhou opened a new issue, #17873:
URL: https://github.com/apache/tvm/issues/17873

   ### Expected behavior
   
   TVM should compile the model correctly with the CUDA backend.
   
   ### Actual behavior
   
   When compiling the model with the CUDA backend, TVM crashes as follows:
   ```c
   Traceback (most recent call last):
     File "/home/carla/Documents/test/test.py", line 43, in <module>
       main()
     File "/home/carla/Documents/test/test.py", line 40, in main
       tvm_model = tvm.tir.transform.DefaultGPUSchedule()(tvm_model) 
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "/home/carla/Documents/tvm/python/tvm/ir/transform.py", line 238, in 
__call__
       return _ffi_transform_api.RunPass(self, mod)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
     File "tvm/_ffi/_cython/./packed_func.pxi", line 339, in 
tvm._ffi._cy3.core.PackedFuncBase.__call__
     File "tvm/_ffi/_cython/./packed_func.pxi", line 270, in 
tvm._ffi._cy3.core.FuncCall
     File "tvm/_ffi/_cython/./packed_func.pxi", line 259, in 
tvm._ffi._cy3.core.FuncCall3
     File "tvm/_ffi/_cython/./base.pxi", line 185, in 
tvm._ffi._cy3.core.CHECK_CALL
     File "/home/carla/Documents/tvm/python/tvm/_ffi/base.py", line 468, in 
raise_last_ffi_error
       raise py_err
   ValueError: Traceback (most recent call last):
     9: 
tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::IRModule
 (tvm::transform::Pass, 
tvm::IRModule)>::AssignTypedLambda<tvm::transform::{lambda(tvm::transform::Pass,
 tvm::IRModule)#7}>(tvm::transform::{lambda(tvm::transform::Pass, 
tvm::IRModule)#7}, std::__cxx11::basic_string<char, std::char_traits<char>, 
std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, 
tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, 
tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
     8: tvm::transform::Pass::operator()(tvm::IRModule) const
     7: tvm::transform::Pass::operator()(tvm::IRModule, 
tvm::transform::PassContext const&) const
     6: tvm::transform::ModulePassNode::operator()(tvm::IRModule, 
tvm::transform::PassContext const&) const
     5: 
tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::IRModule
 (tvm::IRModule, 
tvm::transform::PassContext)>::AssignTypedLambda<tvm::tir::transform::DefaultGPUSchedule()::{lambda(tvm::IRModule,
 
tvm::transform::PassContext)#1}>(tvm::tir::transform::DefaultGPUSchedule()::{lambda(tvm::IRModule,
 tvm::transform::PassContext)#1})::{lambda(tvm::runtime::TVMArgs const&, 
tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, 
tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
     4: tvm::tir::transform::DefaultGPUSchedule()::{lambda(tvm::IRModule, 
tvm::transform::PassContext)#1}::operator()(tvm::IRModule, 
tvm::transform::PassContext) const [clone .isra.0]
     3: tvm::tir::transform::ThreadBind(tvm::tir::Schedule, tvm::tir::BlockRV 
const&, long, long)
     2: tvm::tir::TracedScheduleNode::AddUnitLoop(tvm::tir::BlockRV const&)
     1: tvm::tir::ConcreteScheduleNode::AddUnitLoop(tvm::tir::BlockRV const&)
     0: tvm::tir::AddUnitLoop(tvm::tir::ScheduleState, tvm::tir::StmtSRef)
     File 
"/home/carla/Documents/tvm/src/tir/schedule/primitive/loop_transformation.cc", 
line 1153
   ValueError: Check failed: (sref->parent != nullptr) is false: Cannot add 
loops on top of the root block
   
   ```
   
   ### Environment
   
   OS: Ubuntu 20.04
   TVM: 0.21.dev0(c00f52a70)
   
   ### Steps to reproduce
   
   This bug can be reproduced by the following code with the model in the 
attachment. As shown in the code, the model can be executed by onnxruntime and 
also be compiled by tvm with cpu backend. However, tvm failed to compile this 
model with CUDA backend.
   
   ```python
   import sys
   
   import numpy as np
   import onnx
   import onnxruntime
   
   import tvm
   from tvm import relax
   from tvm.relax.frontend.onnx import from_onnx
   
   import argparse
   import pickle
   
               
   def main():
       onnx_model = onnx.load("a2.onnx")
       
       with open("inputs.pkl", "rb") as fp:
           inputs = pickle.load(fp)
       
       try:
           ort_session = onnxruntime.InferenceSession(
               onnx_model.SerializeToString(), 
providers=["CPUExecutionProvider"]
           )
           ort_output = ort_session.run([], inputs)
       except Exception as e:
           print(e)
           sys.exit(1)
           
       # Convert the onnx model into relax through the onnx importer.
       tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
       # Convert operators for inference mode.
       tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
       # Legalize any relax ops into tensorir.
       tvm_model = relax.transform.LegalizeOps()(tvm_model)
   
       # Separate model from parameters.
       tvm_model, params = relax.frontend.detach_params(tvm_model)
       
       # Prepare inputs.
       input_list = [
           inputs[key.name_hint] for key in tvm_model["main"].params if 
key.name_hint in inputs
       ]
       if params:
           input_list += params["main"]
           
       # Compile the relax graph into a VM then run.
       #----------------------cpu-----------------------
       with tvm.transform.PassContext(opt_level=3):
           target = tvm.target.Target("llvm", host="llvm")
           relax_pipeline = relax.pipeline.get_default_pipeline(target)
           
           ex = relax.build(tvm_model, target="llvm", 
relax_pipeline=relax_pipeline)
           vm = relax.VirtualMachine(ex, tvm.cpu())
       
           # Run model and check outputs.
           vm.set_input("main", *input_list)
           vm.invoke_stateful("main")
           tvm_cpu_output = vm.get_outputs("main")
       #----------------------cpu-----------------------
       
       #----------------------cuda-----------------------
       with tvm.target.Target("cuda"):
           tvm_model = tvm.tir.transform.DefaultGPUSchedule()(tvm_model) 
   
       #----------------------cuda-----------------------
       
       
   if __name__ == "__main__":
       main()
   ```
   
   
[testcase.zip](https://github.com/user-attachments/files/19844214/testcase.zip)
   
   ### Triage
   
   * needs-triage
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to