Cookiee235 opened a new issue, #18380:
URL: https://github.com/apache/tvm/issues/18380
The provided TIR module can be successfully compiled using `tvm.build` with
target='llvm'. However, when using `ms.tir_integration.tune_tir` for
Meta-Schedule tuning, the script crashes unexpectedly with a
`tvm.tir.schedule.ScheduleError`.
It seems a bug in the Meta-Schedule component.
### Actual behavior
```
Traceback (most recent call last):
File "/share_container/LLMFuzz/TirFuzz/bug_tp/topi.max_0_M2.py", line 29,
in <module>
database = ms.tir_integration.tune_tir(mod=mod, target='llvm
--num-cores=16', work_dir='./tune_tmp', max_trials_global=1,
num_trials_per_iter=1)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/software/tvm-latest/python/tvm/meta_schedule/tir_integration.py",
line 146, in tune_tir
return tune_tasks(
^^^^^^^^^^^
File "/software/tvm-latest/python/tvm/meta_schedule/tune.py", line 122, in
tune_tasks
task_scheduler.tune(
File
"/software/tvm-latest/python/tvm/meta_schedule/task_scheduler/task_scheduler.py",
line 132, in tune
_ffi_api.TaskSchedulerTune( # type: ignore # pylint: disable=no-member
File "python/tvm_ffi/cython/function.pxi", line 758, in
core.Function.__call__
File "<unknown>", line 0, in
tvm::meta_schedule::GradientBasedNode::Tune(tvm::ffi::Array<tvm::meta_schedule::TuneContext,
void>, tvm::ffi::Array<tvm::FloatImm, void>, int, int, int,
tvm::meta_schedule::Builder, tvm::meta_schedule::Runner,
tvm::ffi::Array<tvm::meta_schedule::MeasureCallback, void>,
tvm::ffi::Optional<tvm::meta_schedule::Database, void>,
tvm::ffi::Optional<tvm::meta_schedule::CostModel, void>)
File "<unknown>", line 0, in
tvm::meta_schedule::TaskSchedulerNode::Tune(tvm::ffi::Array<tvm::meta_schedule::TuneContext,
void>, tvm::ffi::Array<tvm::FloatImm, void>, int, int, int,
tvm::meta_schedule::Builder, tvm::meta_schedule::Runner,
tvm::ffi::Array<tvm::meta_schedule::MeasureCallback, void>,
tvm::ffi::Optional<tvm::meta_schedule::Database, void>,
tvm::ffi::Optional<tvm::meta_schedule::CostModel, void>)
File "<unknown>", line 0, in
tvm::meta_schedule::PostOrderApplyNode::GenerateDesignSpace(tvm::IRModule
const&)
File "<unknown>", line 0, in
tvm::meta_schedule::AutoInlineNode::Apply(tvm::tir::Schedule const&,
tvm::tir::BlockRV const&)
File "<unknown>", line 0, in
tvm::meta_schedule::AutoInlineNode::CheckInline(tvm::tir::Schedule const&,
tvm::tir::BlockRV const&)
File "<unknown>", line 0, in
tvm::tir::GetScopeRoot(tvm::tir::ScheduleState const&, tvm::tir::StmtSRef
const&, bool) [clone .cold]
File "<unknown>", line 0, in tvm::tir::ScheduleError::ScheduleError()
tvm.tir.schedule.schedule.ScheduleError
```
### Environment
tvm-0.22.dev0
### Steps to reproduce
```
import tvm
from tvm import meta_schedule as ms
tir_str = """# from tvm.script import ir as I
# from tvm.script import tir as T
@I.ir_module
class Module:
@T.prim_func
def main(data: T.Buffer((8, 8), "float32"), data_red: T.Buffer((),
"float32")):
T.func_attr({"target": T.target({"keys": ["cpu"], "kind": "llvm",
"mtriple": "x86_64-unknown-linux-gnu", "tag": ""}), "tir.noalias":
T.bool(True)})
with T.block("data_red"):
T.reads(data[0:8, 0:8])
T.writes(data_red[()])
with T.init():
data_red[()] = T.float32(-3400000.0)
for i, j in T.grid(8, 8):
with T.block("update"):
T.reads(data_red[()], data[i, j])
T.writes(data_red[()])
data_red[()] = T.max(data_red[()], data[i, j])
"""
mod = tvm.script.from_source(tir_str)
mod.show()
#with tvm.transform.PassContext(0):
# tvm.build(mod, target='llvm')
database = ms.tir_integration.tune_tir(mod=mod, target='llvm
--num-cores=16', work_dir='./tune_tmp', max_trials_global=1,
num_trials_per_iter=1)
```
### Triage
* needs-triage
* tune:meta_schedule
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]