Cookiee235 opened a new issue, #18424:
URL: https://github.com/apache/tvm/issues/18424
When running meta_schedule.tune_tir on a valid TIR module involving
multi-dimensional access patterns, TVM crashes during the schedule rewriting
phase (RewriteParallelVectorizeUnroll).
### Actual behavior
```
Traceback (most recent call last):
File
"/share_container/LLMFuzz/TirFuzz/bugs/10-24_20-21/topi.gather_0_M1.py", line
32, in <module>
database = ms.tir_integration.tune_tir(mod=tir_mod, target='llvm
--num-cores=32', work_dir='./tune_tmp', max_trials_global=1,
num_trials_per_iter=1)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "test", line 146, in tune_tir
return tune_tasks(
^^^^^^^^^^^
File "/software/tvm-latest/python/tvm/meta_schedule/tune.py", line 122, in
tune_tasks
task_scheduler.tune(
File
"/software/tvm-latest/python/tvm/meta_schedule/task_scheduler/task_scheduler.py",
line 132, in tune
_ffi_api.TaskSchedulerTune( # type: ignore # pylint: disable=no-member
File "python/tvm_ffi/cython/function.pxi", line 758, in
core.Function.__call__
File "<unknown>", line 0, in
tvm::meta_schedule::GradientBasedNode::Tune(tvm::ffi::Array<tvm::meta_schedule::TuneContext,
void>, tvm::ffi::Array<tvm::FloatImm, void>, int, int, int,
tvm::meta_schedule::Builder, tvm::meta_schedule::Runner,
tvm::ffi::Array<tvm::meta_schedule::MeasureCallback, void>,
tvm::ffi::Optional<tvm::meta_schedule::Database, void>,
tvm::ffi::Optional<tvm::meta_schedule::CostModel, void>)
File "<unknown>", line 0, in
tvm::meta_schedule::TaskSchedulerNode::Tune(tvm::ffi::Array<tvm::meta_schedule::TuneContext,
void>, tvm::ffi::Array<tvm::FloatImm, void>, int, int, int,
tvm::meta_schedule::Builder, tvm::meta_schedule::Runner,
tvm::ffi::Array<tvm::meta_schedule::MeasureCallback, void>,
tvm::ffi::Optional<tvm::meta_schedule::Database, void>,
tvm::ffi::Optional<tvm::meta_schedule::CostModel, void>)
File "<unknown>", line 0, in
tvm::meta_schedule::EvolutionarySearchNode::GenerateMeasureCandidates()
File "<unknown>", line 0, in
tvm::meta_schedule::EvolutionarySearchNode::State::GenerateMeasureCandidates()
File "<unknown>", line 0, in
tvm::meta_schedule::EvolutionarySearchNode::State::SampleInitPopulation(int)
File "<unknown>", line 0, in tvm::support::parallel_for_dynamic(int, int,
int, std::function<void (int, int)> const&) [clone .cold]
File "<unknown>", line 0, in tvm::runtime::detail::LogFatal::~LogFatal()
[clone .constprop.0]
File "<unknown>", line 0, in
tvm::runtime::detail::LogFatal::Entry::Finalize()
RuntimeError: parallel_for_dynamic error with Traceback (most recent call
last):
File "<unknown>", line 0, in
tvm::meta_schedule::GradientBasedNode::Tune(tvm::ffi::Array<tvm::meta_schedule::TuneContext,
void>, tvm::ffi::Array<tvm::FloatImm, void>, int, int, int,
tvm::meta_schedule::Builder, tvm::meta_schedule::Runner,
tvm::ffi::Array<tvm::meta_schedule::MeasureCallback, void>,
tvm::ffi::Optional<tvm::meta_schedule::Database, void>,
tvm::ffi::Optional<tvm::meta_schedule::CostModel, void>)
File "<unknown>", line 0, in
tvm::meta_schedule::TaskSchedulerNode::Tune(tvm::ffi::Array<tvm::meta_schedule::TuneContext,
void>, tvm::ffi::Array<tvm::FloatImm, void>, int, int, int,
tvm::meta_schedule::Builder, tvm::meta_schedule::Runner,
tvm::ffi::Array<tvm::meta_schedule::MeasureCallback, void>,
tvm::ffi::Optional<tvm::meta_schedule::Database, void>,
tvm::ffi::Optional<tvm::meta_schedule::CostModel, void>)
File "<unknown>", line 0, in
tvm::meta_schedule::EvolutionarySearchNode::GenerateMeasureCandidates()
File "<unknown>", line 0, in
tvm::meta_schedule::EvolutionarySearchNode::State::GenerateMeasureCandidates()
File "<unknown>", line 0, in
tvm::meta_schedule::EvolutionarySearchNode::State::SampleInitPopulation(int)
File "<unknown>", line 0, in tvm::support::parallel_for_dynamic(int, int,
int, std::function<void (int, int)> const&)
File "<unknown>", line 0, in
tvm::meta_schedule::EvolutionarySearchNode::State::SampleInitPopulation(int)::{lambda(int,
int)#1}::operator()(int, int) const
File "<unknown>", line 0, in
tvm::meta_schedule::ThreadedTraceApply::Apply(tvm::IRModule const&,
tvm::tir::Trace const&, long*)
File "<unknown>", line 0, in
tvm::meta_schedule::RewriteParallelVectorizeUnrollNode::Apply(tvm::tir::Schedule
const&)
File "<unknown>", line 0, in
tvm::tir::RewriteFuseSplitParallelVectorize(tvm::tir::Schedule const&,
tvm::ffi::Array<tvm::tir::LoopRV, void>*, int)
File "<unknown>", line 0, in
tvm::tir::TracedScheduleNode::Parallel(tvm::tir::LoopRV const&)
File "/software/tvm-latest/src/tir/schedule/concrete_schedule.cc", line
630, in virtual void tvm::tir::ConcreteScheduleNode::Parallel(const
tvm::tir::LoopRV&)
ScheduleError: (not rendered)
```
### Environment
tvm: 0.23.dev0
### Steps to reproduce
```
import tvm
from tvm import te, topi, tir
from tvm import meta_schedule as ms
tir_str = """# from tvm.script import ir as I
# from tvm.script import tir as T
@I.ir_module
class Module:
@T.prim_func
def main(data: T.Buffer((4, 6, 8), "float32"), indices: T.Buffer((2, 6,
8), "int32"), T_gather: T.Buffer((2, 6, 8), "float32")):
T.func_attr({"target": T.target({"keys": ["cpu"], "kind": "llvm",
"mtriple": "x86_64-unknown-linux-gnu", "tag": ""}), "tir.noalias": True})
# with T.block("root"):
for ax0, ax1, ax2 in T.grid(2, 6, 8):
with T.block("T_gather"):
v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
T.reads(data[indices[v_ax0, v_ax1, v_ax2], v_ax1, v_ax2],
indices[v_ax0, v_ax1, v_ax2])
T.writes(T_gather[v_ax0, v_ax1, v_ax2])
T_gather[v_ax0, v_ax1, v_ax2] = data[indices[v_ax0, v_ax1,
v_ax2], v_ax1, v_ax2]
# Add additional multi-dimensional access to trigger StorageFlatten
for ax0, ax1, ax2 in T.grid(4, 6, 8):
with T.block("additional_access"):
v_ax0, v_ax1, v_ax2 = T.axis.remap("SSS", [ax0, ax1, ax2])
T.reads(data[v_ax0, v_ax1, v_ax2])
T.writes(data[v_ax0, v_ax1, v_ax2])
data[v_ax0, v_ax1, v_ax2] = data[v_ax0, v_ax1, v_ax2] +
T.float32(1.0)
"""
tir_mod = tvm.script.from_source(tir_str)
tir_mod.show()
database = ms.tir_integration.tune_tir(mod=tir_mod, target='llvm
--num-cores=32', work_dir='./tune_tmp', max_trials_global=1,
num_trials_per_iter=1)
```
### Triage
* needs-triage
* meta-tune
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]