giuseros commented on a change in pull request #6095:
URL: https://github.com/apache/incubator-tvm/pull/6095#discussion_r458145575



##########
File path: topi/python/topi/arm_cpu/depthwise_conv2d.py
##########
@@ -181,6 +180,130 @@ def depthwise_conv2d_nchw_spatial_pack(cfg, data, kernel, 
strides, padding, dila
 
     return _decl_spatial_pack(cfg, data, kernel, strides, padding, dilation, 
out_dtype, num_tile=2)
 
+@autotvm.register_topi_compute("depthwise_conv2d_nhwc.arm_cpu")
+def compute_depthwise_conv2d_nhwc(_, data, kernel, strides, padding, dilation, 
out_dtype):
+    """TOPI compute callback for depthwise_conv2d nhwc
+
+    Parameters
+    ----------
+    cfg: ConfigEntity
+        The config for this template
+
+    data : tvm.te.Tensor
+        4-D with shape [batch, in_height, in_width, in_channel]
+
+    kernel : tvm.te.Tensor
+        4-D with shape [filter_height, filter_width, in_channel, 
channel_multiplier]
+
+    strides : list of two ints
+        [stride_height, stride_width]
+
+    padding : list of two ints
+        [pad_height, pad_width]
+
+    dilation : list of two ints
+        [dilation_height, dilation_width]
+
+    out_dtype: str
+        The output type. This is used for mixed precision.
+
+    Returns
+    -------
+    output : tvm.te.Tensor
+        4-D with shape [batch, out_height, out_width, out_channel]
+    """
+
+    out_dtype = out_dtype or data.dtype
+
+    N, IH, IW, IC = get_const_tuple(data.shape)
+
+    if isinstance(dilation, int):
+        dilation_h = dilation_w = dilation
+    else:
+        dilation_h, dilation_w = dilation
+
+    KH, KW, IC, channel_multiplier = get_const_tuple(kernel.shape)
+
+    dilated_kernel_h = (KH - 1) * dilation_h + 1
+    dilated_kernel_w = (KW - 1) * dilation_w + 1
+
+    pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
+        padding, (dilated_kernel_h, dilated_kernel_w))
+    HSTR, WSTR = strides if isinstance(strides, (tuple, list)) else (strides, 
strides)
+
+    OH = (IH + pad_top + pad_down - dilated_kernel_h) // HSTR + 1
+    OW = (IW + pad_left + pad_right - dilated_kernel_w) // WSTR + 1
+
+    if pad_top or pad_left:
+        data_pad = nn.pad(data, [0, pad_top, pad_left, 0], [0, pad_down, 
pad_right, 0],
+                          name="data_pad")
+    else:
+        data_pad = data
+
+    output_shape = (N, OH, OW, IC*channel_multiplier)
+
+    idxdiv = tvm.tir.indexdiv
+    idxmod = tvm.tir.indexmod
+
+    reduce_h = te.reduce_axis((0, KH), name='reduce_h')
+    reduce_w = te.reduce_axis((0, KW), name='reduce_w')
+
+    out = te.compute(output_shape, lambda n, h, w, c:
+                     te.sum(data_pad[n,
+                                     HSTR*h+dilation_h*reduce_h,
+                                     w*WSTR+reduce_w*dilation_w,
+                                     idxdiv(c, 
channel_multiplier)].astype(out_dtype) *
+                            kernel[reduce_h,
+                                   reduce_w,
+                                   idxdiv(c, channel_multiplier),
+                                   idxmod(c, 
channel_multiplier)].astype(out_dtype),
+                            axis=[reduce_h, reduce_w]),
+                     name='depthwise_conv2d_nhwc_output')
+
+    return out
+
+@autotvm.register_topi_schedule("depthwise_conv2d_nhwc.arm_cpu")
+def schedule_depthwise_conv2d_nhwc(_, outs):
+    """Create the schedule for depthwise_conv2d_nchw_spatial_pack"""
+    outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs
+    s = te.create_schedule([x.op for x in outs])
+    out = outs[0]
+
+    def schedule_conv(conv):
+        n, w, h, c = conv.op.axis
+        r_h, r_w = conv.op.reduce_axis
+        co, ci = s[conv].split(c, 8)
+        wo, wi = s[conv].split(w, 2)
+        ho, hi = s[conv].split(h, 2)
+
+        s[conv].reorder(n, wo, ho, co, wi, hi, r_h, r_w, ci)
+        s[conv].parallel(wo)
+        s[conv].vectorize(ci)
+
+    def schedule_conv_out(out):
+        n, h, w, c = out.op.axis
+        co, ci = s[out].split(c, 8)
+        wo, wi = s[out].split(w, 2)
+        ho, hi = s[out].split(h, 2)
+        ci_outer, ci_inner = s[out].split(ci, 4)

Review comment:
       In the case of the last split `s[out].split(ci, 4)` I need to do this 
split for quantized because I want to use arm intrinsics. I added a comment to 
explain this. 




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Reply via email to