codeislife99 commented on a change in pull request #7126:
URL: https://github.com/apache/tvm/pull/7126#discussion_r546961924



##########
File path: python/tvm/relay/op/transform.py
##########
@@ -1320,3 +1320,84 @@ def adv_index(inputs):
         Output tensor.
     """
     return _make.adv_index(Tuple(inputs))
+
+
+def sparsefillemptyrows(sparse_indices, sparse_values, dense_shape, 
default_value):
+    """
+    Fill first column of the empty rows with default values for a sparse array.
+
+    Parameters
+    ----------
+    sparse_indices : relay.Expr
+        A 2-D tensor[N, n_dim] of integers containing location of sparse 
values, where N is the
+        number of sparse values and n_dim is the number of dimensions of the 
dense_shape
+
+    sparse_values : relay.Expr
+        A 1-D tensor[N] containing the sparse values for the sparse indices.
+
+    dense_shape : relay.Expr
+        A list of integers. Shape of the dense output tensor.
+
+    default_value : relay.Expr
+        A 0-D tensor containing the default value for the remaining locations.
+        Defaults to 0.
+
+    Returns
+    -------
+    TupleWrapper with the following four outputs
+
+    new_sparse_indices : relay.Expr
+        A 2-D tensor[N + dense_shape[0], n_dim] of integers containing 
location of new sparse
+        indices where N is the number of sparse values. It is filled with -1 
at to_be_discarded
+        indices.
+
+    empty_row_indicator : relay.Expr
+        A 1-D Boolean tensor[dense_shape[0]] indicating whether the particular 
row is empty
+
+    new_sparse_values : relay.Expr
+        A 1-D tensor[dense_shape[0]] containing the sparse values for the 
sparse indices. It is
+        filled with -1 at to_be_discarded indices.
+
+    slice_element_index : relay.Expr
+        A 1-D tensor containing the amount of elements in the sparse_indices 
and new_sparse_values
+        expression to be sliced in a future op discarding non-useful elements 
in new_sparse_indices
+        and new_sparse_values
+
+    Examples
+    -------
+
+    .. code-block:: python
+
+    sparse_indices = [[0, 1],
+                      [0, 3],
+                      [2, 0],
+                      [3, 1]]
+    sparse_values = [1, 2, 3, 4]
+    default_value = [10]
+    dense_shape = [5, 6]
+    new_sparse_indices, empty_row_indicator, new_sparse_values, 
slice_element_index =
+                        relay.sparsereshape(
+                        sparse_indices,
+                        sparse_values,
+                        prev_shape,
+                        new_shape)
+    new_sparse_indices =       [[0, 1],
+                               [0, 3],
+                               [2, 0],
+                               [3, 1],
+                               [1, 0],
+                               [4, 0],
+                               [-1, -1],

Review comment:
       Yeah, in the short-term it will be used for TF. 
https://www.tensorflow.org/api_docs/python/tf/sparse/fill_empty_rows




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Reply via email to