sxjscience commented on a change in pull request #7230: URL: https://github.com/apache/tvm/pull/7230#discussion_r556152281
########## File path: tests/python/frontend/mxnet/test_forward.py ########## @@ -1935,6 +1935,29 @@ def verify(data_shape, axis, use_length, length): verify((2, 3, 4), 2, True, np.array([[3, 4, 2], [1, 2, 1]]).astype("int32")) +@pytest.mark.parametrize( + "data_shape, row_sel, col", + [ + ((5, 7), (0, 1, 2, 3, 4,), 2), + ], +) +@pytest.mark.parametrize("dtype", ["float64", "float32"]) +@tvm.testing.parametrize_targets +@pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) +def test_forward_npi_advanced_indexing_multiple(data_shape, row_sel, col, dtype, target, ctx, kind): + data_np = np.random.uniform(size=data_shape).astype(dtype) + data = mx.sym.var("data") + ref_res = mx.np.array(data_np)[row_sel, col] + + # TODO need to add the proper symbol operator + mx_sym = mx.sym.np.(data.as_np_ndarray()[row_sel, col]) Review comment: Also, I think you will need to install the nightly version of MXNet 2.0. You may follow the guide in https://github.com/dmlc/gluon-nlp. ```bash # Install the version with CUDA 10.1 python3 -m pip install -U --pre "mxnet-cu101>=2.0.0b20201206" -f https://dist.mxnet.io/python # Install the version with CUDA 10.2 python3 -m pip install -U --pre "mxnet-cu102>=2.0.0b20201206" -f https://dist.mxnet.io/python # Install the version with CUDA 11 python3 -m pip install -U --pre "mxnet-cu110>=2.0.0b20201206" -f https://dist.mxnet.io/python # Install the cpu-only version python3 -m pip install -U --pre "mxnet>=2.0.0b20201206" -f https://dist.mxnet.io/python ``` ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org