sunggg commented on code in PR #89:
URL: https://github.com/apache/tvm-rfcs/pull/89#discussion_r950339476


##########
rfcs/0089-relax-upstreaming.md:
##########
@@ -0,0 +1,701 @@
+- Feature Name: Relax Upstreaming
+- Start Date: 2022-08-17
+- RFC PR: [apache/tvm-rfcs#0089](https://github.com/apache/tvm-rfcs/pull/0089)
+- GitHub Issue: [apache/tvm#0000](https://github.com/apache/tvm/issues/0000)
+- Co-Authors: [@denise-k](https://github.com/denise-k), 
[@jwfromm](https://github.com/jwfromm)
+
+# 1. **Summary**
+
+This RFC proposes to upstream the core foundation of Relax (Relay Next). Relax 
is a new graph-level IR that enables new capabilities to address the [critical 
needs](https://discuss.tvm.apache.org/t/establish-tvm-unity-connection-a-technical-strategy/13344)
 identified by the TVM community over the years of using and developing deep 
learning compilers.
+
+# 2. **Motivation and goals**
+
+Relax is an effort within [TVM 
Unity](https://tvm.apache.org/2021/12/15/tvm-unity) that aims to evolve the 
graph-level IR to maximize **expressibility, performance, and portability** 
across today and tomorrow’s workloads. Relax has three key goals motivated by 
the TVM community’s needs, and lessons the community has learned in ML 
acceleration through years of using and developing TVM:
+
+- Build a unified interface to transcends the boundaries of TVM’s abstractions 
between graph-level IR, tensor programs (TensorIR), and runtime libraries 
(PackedFunc);
+- Enable and optimize dynamic shape workloads;
+- Support “computational graph” style optimizations with advanced dataflow 
semantics.
+
+For more details on the design goals of Relax, please check out the [discuss 
forum 
post](https://discuss.tvm.apache.org/t/relax-co-designing-high-level-abstraction-towards-tvm-unity/12496).
+
+The main focus of this upstreaming RFC is to upstream the **core foundation** 
of Relax as an **optional** compilation flow in TVM with two principles:
+
+- **Minimize disruption:** This upstreaming should provide a **non-default** 
path to enable new capabilities for users/developers who are interested in what 
Relax brings, so it will not break the current default Relay flow.
+- **Minimize complexity:** This upstreaming should reuse existing TVM/Relay 
infrastructure as much as possible (for example IRModule, runtime Module, TOPI 
library, etc.) to avoid duplicated effort and code.
+
+This initial upstreaming will open the path for TVM Unity, and incrementally 
bring Relax into the community.
+
+# 3. **Guide-level explanation**
+
+This section introduces the three major design points of Relax, which map 
directly to the three key goals of Relax in the last section. At the beginning 
of this section, we first introduce what user-facing interfaces will look like 
after this RFC lands.
+
+(Most of the code examples in this RFC are written in 
[TVMScript](https://github.com/apache/tvm-rfcs/pull/74/files#diff-6965a40ad8df7618ae68e11c88f924542a506c74a931cc3011ae9f99989b5f51R21-R27),
 which enables users to write and print TVM programs containing both Relax and 
TIR functions with Python syntax.)
+
+## User-facing interface
+
+After this upstreaming lands, users are able to write a Relax program in 
TVMScript or translate a model directly from Relay. Relax provides a simple API 
to compile the IRModule to VM executable, and run it on Relax VM.
+
+```python
+import tvm.script
+from tvm.script import relax as R, tir as T
+
+# Relax IRModule written in TVMScript
+@tvm.script.ir_module
+class MyIRModule:
+    # This is a TIR PrimFunc which calls the TIR intrinsic T.exp
+    @T.prim_func
+    def tir_exp_func(x: T.handle, y: T.handle): ## <= D2
+        X = T.match_buffer(x, (n,), "float32")
+        Y = T.match_buffer(y, (n,), "float32")
+        with T.grid(n) as i:
+            Y[i] = T.exp(X[i])
+
+    # This is a Relax function which contains a dataflow block
+    # representing a computational graph, as well as a call to an
+    # opaque packed function which performs an in-place update to the
+    # data in variable gv0.
+    # We mark the corresponding design points (D0, D1, D2) that map to
+    # the following sections throughout the relax function bellow.
+    @R.function
+    def relax_func(x: R.Tensor[(n, k), "float32"], w: R.Tensor[_, "float32"]):
+    # n, k above are implicitly defined within the function signature
+    # so we will be able to refer to n, k within all of relax_func
+        with R.dataflow(): ## <= D2
+            lv0 = R.match_shape(w, (k, m)) ## <= D1
+            lv1: R.Tensor[(n, m), "float32"] = R.dot(x, lv0)
+            lv2: R.Tensor[(n * m,), "float32"] = R.flatten(lv1) ## <= D1
+            lv3: R.Shape = (n * m,)  ## <= D1
+            gv0 = R.call_tir(tir_exp_func, [lv2], lv3, dtype="float32") ## <= 
D0
+            R.outputs(gv0)
+
+        R.call_packed("custom_inplace_update", gv0) ## <= D0, D2
+        return gv0
+
+# Print IRModule with syntax highlighting
+MyIRModule.show()
+
+# Build the Relax IRModule
+target = tvm.target.Target("llvm")
+exec = relax.vm.build(MyIRModule, target)
+
+# Dump the VM executable instructions as text
+print(ex.as_text())
+
+# Run the function on Relax VM runtime
+vm = relax.VirtualMachine(exec, tvm.cpu())
+shape = (2, 3)
+data = tvm.nd.array(np.random.rand(*shape).astype(np.float32))
+res = vm["relax_func"](data)
+```
+
+## D0: ****Unified abstractions and optimizations across layers****
+
+The first key design point is to allow the high-level graph IR to be able to 
directly interact and call into lower-level TensorIR and PackedFunc (TVM FFI).
+
+The TensorIR PrimFunc and many external libraries adopt a 
**destination-passing-style** (DPS) calling convention that both input and 
output are passed to the function as arguments, and the outputs are mutated 
directly inside the function:
+
+```python
+def low_level_func(input0, input1, ..., output):
+    # implementations
+```
+
+The main idea of DPS is that input and output are explicitly allocated outside 
and passed to the low-level primitive function. This style is commonly used in 
low-level library designs (for example TensorRT), so that higher-level 
frameworks (for example, the compiler) can handle memory allocation.
+
+### ****call_tir****
+
+In Relax, we introduce `call_tir` to bridge graph-level IR and TIR. `call_tir` 
is an intrinsic that calls a TIR PrimFunc (that follows DPS) and returns the 
output. The semantics of `call_tir` can be demonstrated by the code below.
+
+```python
+def call_tir(tir_primfunc: GlobalVar, 
+             inputs: Tuple[Expr], 
+             output_shape: Shape, 
+             output_dtype: DataType) -> Expr:
+    """Example code to demonstrate the semantics of call_tir"""
+    out_tensor = alloc_tensor(output_shape, output_dtype)
+    low_level_func(*inputs, out_tensor)
+    return out_tensor
+```
+
+`call_tir` takes in tir_primfunc (a GlobalVar that maps to a TIR PrimFunc in 
the IRModule), a tuple of inputs, output tensor shape and datatype.  Notably, 
when the compiler lowers `call_tir`, it is not required to individually 
allocate each output tensor. The compiler can choose to create a memory plan of 
the intermediate tensors and tie things together for effective reuse.
+
+`call_tir` is implemented as a special relax operator to minimize the impact 
on the IR changes (instead of a standalone IR node). From the AST point of 
view, it becomes:
+
+```python
+Call(
+    op=Op::Get("relax.call_tir"),   
+    tir_primfunc,
+    inputs,
+    output_shape,
+    output_dtype
+)
+```
+
+### ****call_packed****
+
+In Relax, we introduce `call_packed` to bridge graph-level IR and PackedFunc. 
It indicates a call to a **non-DPS packed function** that is registered in the 
environment via TVM FFI. 
+
+From the AST’s point of view, we do not need to introduce an additional call 
node, instead, we introduce an `ExternFunc` construct that represents a 
PackedFunc that we can call into (the PackedFunc may or may not return a value):
+
+```python
+Call(op=ExternFunc("my_packed_func"), *args)
+```
+
+`R.call_packed("my_packed_func", gv0)` in TVMScript (as shown in the 
User-facing interface section) only served as a syntax sugar to represent the 
above AST node. 
+
+### ****call_dps_packed****
+
+To be able to call into a DPS packed function (many low-level library (e.g. 
TensorRT) functions are designed in this way), and hence the compiler is able 
to directly handle the output memory, we introduce a `call_dps_packed` 
intrinsic, which corresponds to the following AST:
+
+```python
+Call(
+    op=Op::Get("relax.call_dps_packed"),   
+    ExternFunc("my_packed_func"),
+    inputs,
+    output_shape,
+    output_dtype
+)
+```
+
+Suppose `custom_packed_func` is a user-defined packed function in DPS:
+
+```python
+R.call_dps_packed("custom_packed_func", (input0, input1), output_shape=(3, 4), 
output_dtype="float32")
+```
+
+corresponds to the following AST:
+
+```python
+Call(
+    op=Op::Get("relax.call_dps_packed"),
+    ExternFunc("custom_packed_func"),
+    (input0, input1),
+    output_shape=(3, 4), 
+    output_dtype="float32"
+)
+```
+
+The following program in TVMScript shows that with `call_tir`, `call_packed`, 
and `call_dps_packed`, we can directly embed and call the TIR and PackedFunc 
functions in the high-level Relax IR program.
+
+```python
+from tvm.script import relax as R
+
+# User-defined packed functions
+# Non-DPS PackedFunc with return
+@tvm.register_func("custom_add")
+def add_packed(a, b):
+    ret = a.numpy() + b.numpy()
+    return tvm.nd.array(ret)
+
+# Non-DPS PackedFunc without return
+@tvm.register_func("custom_print")
+def print_packed(a):
+    print(a)
+
+# DPS PackedFunc
+@tvm.register_func("custom_tile")
+def tile_packed(a, b):
+    b[:] = tvm.nd.array(np.tile(a.numpy(), (1, 2)))
+
+@tvm.script.ir_module
+class MyIRModule:
+    # define a PrimFunc to do matrix multiply
+    # note TIR PrimFunc is in DPS, here z is the output
+    @T.prim_func
+    def tir_matmul(x: T.handle, y: T.handle, z: T.handle) -> None:
+        m = T.var("int32")
+        n = T.var("int32")
+        k = T.var("int32")
+        A = T.match_buffer(x, (m, n))
+        B = T.match_buffer(y, (n, k))
+        C = T.match_buffer(z, (m, k))
+
+        for (i0, j0, k0) in T.grid(m, n, k):
+            with T.block():
+                i, j, k = T.axis.remap("SSR", [i0, j0, k0])
+                with T.init():
+                    C[i, j] = 0.0
+                C[i, j] += A[i, k] * B[j, k]
+
+    @R.function
+    def relax_func(x: R.Tensor[(m, n), "float32"], y: R.Tensor[(n, k), 
"float32"]):
+        with R.dataflow():
+            # call_tir calls into a PrimFunc, and returns the matrix 
multiplication result
+            gv0 = R.call_tir(tir_matmul, (x, y), (m, k), dtype="float32")
+            R.outputs(gv0)
+
+        # call into a PackedFunc to print the value of gv0
+        R.call_packed("custom_print", gv0)
+
+        # call the registered "custom_add" non-DPS PackedFunc and return the 
result
+        gv1 = R.call_packed("custom_add", gv0, gv0)
+
+        # call the registered "custom_tile" DPS PackedFunc and return the 
result
+        gv2 = R.call_dps_packed("custom_tile", (gv1), (m, k * 2), 
dtype="float32")
+        return gv2
+```
+
+This cross-level interaction unlocks many interesting things that were not 
possible before, including, but not limited to:
+
+- Incrementally lower different parts of a program using different strategies, 
instead of lowering the entire program to TIR directly from Relay as today.

Review Comment:
   Thanks for the comment! Yes, it has been supported in Relay but there are 
some nontrivial limitation, imo. 
   
   - (1) Relay main pipeline lowers every Relay IRs into TIR at once at their 
IR boundary. This makes partial lowering (lower only part of the graph) 
difficult in the main pipeline. 
   - (2) Relay main pipeline supports lowering with `OpStrategy`. However, it 
is not necessarily easy to customize it (custom lowering)
   
   For these reasons, people introduced `RelayToTIR` and `RelayToRuntime` that 
essentially bypass the main pipeline. Although it enables the functionalities 
people want, it is hard to maintain them as a framework and it is not easy if 
you want to leverage multiple lowering strategies in the incremental way. 
Therefore, Relax wants to tackle down this problem and provide such supports in 
an organized systematic way. For example, since Relax provides unified 
abstraction, we can introduce GraphIR->TIR transformation into the pipeline and 
this is essentially what lowering does. Thus, by introducing such mechanism as 
a Relax->TIR transformation pass, Relax can bring those functionalities into 
the main pipeline in a customizable manner. We expect users may be able to 
reuse most of lowering machinery since most of times, you just want to change 
"how to lower" part. 



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: commits-unsubscr...@tvm.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to