This is an automated email from the ASF dual-hosted git repository. lukhut pushed a commit to branch main in repository https://gitbox.apache.org/repos/asf/tvm.git
The following commit(s) were added to refs/heads/main by this push: new 1222398342 [TFLite] Support quantized GREATER op in TFLite frontend (#12754) 1222398342 is described below commit 12223983422868bbbc5444f66d175aeb9318b71f Author: Dhruv Chauhan <89972057+dchauhan-...@users.noreply.github.com> AuthorDate: Mon Sep 12 21:03:56 2022 +0100 [TFLite] Support quantized GREATER op in TFLite frontend (#12754) Support GREATER quantization operation conversion as part of issue #9187 Continuation of #11519. --- python/tvm/relay/frontend/tflite.py | 19 ++++++----- tests/python/frontend/tflite/test_forward.py | 49 +++++++++++++++------------- 2 files changed, 37 insertions(+), 31 deletions(-) diff --git a/python/tvm/relay/frontend/tflite.py b/python/tvm/relay/frontend/tflite.py index c38191b389..6c68230e0e 100644 --- a/python/tvm/relay/frontend/tflite.py +++ b/python/tvm/relay/frontend/tflite.py @@ -1291,7 +1291,13 @@ class OperatorConverter(object): return out - def _convert_elemwise(self, relay_op, op, ignore_qnn_params=False): + def _convert_elemwise( + self, + relay_op, + op, + ignore_qnn_params=False, + comparison_op=False, + ): """Generic method to Convert TFLite elemwise""" try: from tflite.AddOptions import AddOptions @@ -1316,7 +1322,7 @@ class OperatorConverter(object): # TFLite format demands equal scale and zero_point tuple parameters for some operations # to allow us to use non-quantized operation instead of quantized if ignore_qnn_params=True - if ignore_qnn_params: + if ignore_qnn_params and not comparison_op: assert ( lhs_tensor.qnn_params and self.has_same_qnn_params(lhs_tensor, output_tensor) @@ -1431,12 +1437,7 @@ class OperatorConverter(object): def convert_greater(self, op): """Convert TFLite GREATER""" - # Check if the input tensor is quantized, call QNN op - if self.is_quantized(op): - raise tvm.error.OpNotImplemented( - "TFlite quantized GREATER operator is not supported yet." - ) - return self._convert_elemwise(_op.greater, op) + return self._convert_elemwise(_op.greater, op, self.is_quantized(op), comparison_op=True) def convert_squared_difference(self, op): """Convert TFLite SQUARED DIFFERENCE""" @@ -1475,7 +1476,7 @@ class OperatorConverter(object): def convert_equal(self, op): """Convert TFLite EQUAL""" - return self._convert_elemwise(_op.equal, op, self.is_quantized(op)) + return self._convert_elemwise(_op.equal, op, self.is_quantized(op), comparison_op=True) def convert_not_equal(self, op): """Convert TFLite NOT_EQUAL""" diff --git a/tests/python/frontend/tflite/test_forward.py b/tests/python/frontend/tflite/test_forward.py index 7267b72548..18045b8e83 100644 --- a/tests/python/frontend/tflite/test_forward.py +++ b/tests/python/frontend/tflite/test_forward.py @@ -2254,6 +2254,7 @@ def _test_elemwise( quantized=False, qnn_op=None, same_qnn_params=False, + comparison_op=False, ): """One iteration of elemwise""" @@ -2298,7 +2299,7 @@ def _test_elemwise( if x[0] is not None } - if math_op is math_ops.equal: + if comparison_op: out = math_op(inq_data[0], inq_data[1]) out = with_fused_activation_function(out, fused_activation_function) @@ -2307,6 +2308,9 @@ def _test_elemwise( [x + ":0" for x in input_range.keys()], [x[1] for x in zip(in_data, inq_data) if x[0] is not None], [out], + quantized=True, + input_range=input_range, + experimental_new_converter=same_qnn_params, ) else: out = math_op(inq_data[0], inq_data[1]) @@ -2314,6 +2318,7 @@ def _test_elemwise( out = tf.quantization.fake_quant_with_min_max_args( out, min=out_min, max=out_max, name="out" ) + # Note same_qnn_params uses experimental_new_converter as toco failed compare_tflite_with_tvm( [x[1] for x in zip(in_data, data) if x[0] is not None], @@ -2440,9 +2445,17 @@ def _test_minimum(data, fused_activation_function=None, quantized=False, qnn_op= # ------- -def _test_greater(data): +def _test_greater(data, fused_activation_function=None, quantized=False, qnn_op=None): """One iteration of greater""" - return _test_elemwise(math_ops.greater, data) + return _test_elemwise( + math_ops.greater, + data, + fused_activation_function, + quantized, + qnn_op, + same_qnn_params=True, + comparison_op=True, + ) ####################################################################### @@ -2489,6 +2502,7 @@ def _test_equal(data, fused_activation_function=None, quantized=False, qnn_op=No quantized, qnn_op, same_qnn_params=True, + comparison_op=True, ) @@ -2555,25 +2569,14 @@ def _test_forward_elemwise(testop): def _test_forward_elemwise_quantized(testop): - if testop is not _test_equal: - testop( - [ - np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8), - np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8), - ], - quantized=True, - qnn_op=testop, - ) - else: - # no need for fake_quant to hold tensors in float32 until conversion - testop( - [ - np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.float32), - np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.float32), - ], - quantized=True, - qnn_op=testop, - ) + testop( + [ + np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8), + np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8), + ], + quantized=True, + qnn_op=testop, + ) def _test_elemwise_qnn_out_range(qnn_op): @@ -2585,6 +2588,7 @@ def _test_elemwise_qnn_out_range(qnn_op): _test_maximum: (-112, 111), _test_minimum: (-128, 127), _test_equal: (-150, 150), + _test_greater: (-150, 150), } return qnn_out_range[qnn_op] @@ -2615,6 +2619,7 @@ def test_all_elemwise(): _test_forward_elemwise(_test_minimum) _test_forward_elemwise_quantized(_test_minimum) _test_forward_elemwise(_test_greater) + _test_forward_elemwise_quantized(_test_greater) _test_forward_elemwise(_test_squared_difference) _test_forward_elemwise(_test_greater_equal) _test_forward_elemwise(_test_less)