This is an automated email from the ASF dual-hosted git repository.

glauesppen pushed a commit to branch develop
in repository https://gitbox.apache.org/repos/asf/incubator-wayang.git

commit c8a2e260d254cfbe9a69bc7e170637954fa77e66
Author: composer <[email protected]>
AuthorDate: Tue Oct 24 09:51:54 2023 +0800

    feat: naive kmeans operator on sparkml
---
 .../wayang/basic/operators/KMeansOperator.java     |  38 +++++++
 .../main/java/org/apache/wayang/spark/Spark.java   |  12 +++
 .../org/apache/wayang/spark/mapping/Mappings.java  |   5 +
 .../wayang/spark/mapping/ml/KMeansMapping.java     |  38 +++++++
 .../spark/operators/ml/SparkKMeansOperator.java    | 119 +++++++++++++++++++++
 .../apache/wayang/spark/plugin/SparkMLPlugin.java  |  35 ++++++
 .../spark/operators/SparkKMeansOperatorTest.java   |  40 +++++++
 .../wayang-spark/wayang-spark_2.12/pom.xml         |   5 +
 .../apache/wayang/tests/SparkIntegrationIT.java    |  53 +++++++--
 9 files changed, 335 insertions(+), 10 deletions(-)

diff --git 
a/wayang-commons/wayang-basic/src/main/java/org/apache/wayang/basic/operators/KMeansOperator.java
 
b/wayang-commons/wayang-basic/src/main/java/org/apache/wayang/basic/operators/KMeansOperator.java
new file mode 100644
index 00000000..91a048d1
--- /dev/null
+++ 
b/wayang-commons/wayang-basic/src/main/java/org/apache/wayang/basic/operators/KMeansOperator.java
@@ -0,0 +1,38 @@
+package org.apache.wayang.basic.operators;
+
+import org.apache.wayang.basic.data.Tuple2;
+import org.apache.wayang.core.api.Configuration;
+import org.apache.wayang.core.optimizer.cardinality.CardinalityEstimator;
+import org.apache.wayang.core.plan.wayangplan.UnaryToUnaryOperator;
+import org.apache.wayang.core.types.DataSetType;
+
+import java.util.Optional;
+
+public class KMeansOperator extends UnaryToUnaryOperator<double[], 
Tuple2<double[], Integer>> {
+    // TODO other parameters
+    protected int k;
+
+    public KMeansOperator(int k) {
+        super(DataSetType.createDefaultUnchecked(double[].class),
+                DataSetType.createDefaultUnchecked(Tuple2.class),
+                false);
+        this.k = k;
+    }
+
+    public KMeansOperator(KMeansOperator that) {
+        super(that);
+        this.k = that.k;
+    }
+
+    public int getK() {
+        return k;
+    }
+
+    // TODO support fit and transform
+
+    @Override
+    public Optional<CardinalityEstimator> createCardinalityEstimator(int 
outputIndex, Configuration configuration) {
+        // TODO
+        return super.createCardinalityEstimator(outputIndex, configuration);
+    }
+}
diff --git 
a/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/Spark.java
 
b/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/Spark.java
index 3bd3d911..aefffed9 100644
--- 
a/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/Spark.java
+++ 
b/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/Spark.java
@@ -22,6 +22,7 @@ import org.apache.wayang.spark.platform.SparkPlatform;
 import org.apache.wayang.spark.plugin.SparkBasicPlugin;
 import org.apache.wayang.spark.plugin.SparkConversionPlugin;
 import org.apache.wayang.spark.plugin.SparkGraphPlugin;
+import org.apache.wayang.spark.plugin.SparkMLPlugin;
 
 /**
  * Register for relevant components of this module.
@@ -34,6 +35,8 @@ public class Spark {
 
     private final static SparkConversionPlugin CONVERSION_PLUGIN = new 
SparkConversionPlugin();
 
+    private final static SparkMLPlugin ML_PLUGIN = new SparkMLPlugin();
+
     /**
      * Retrieve the {@link SparkBasicPlugin}.
      *
@@ -61,6 +64,15 @@ public class Spark {
         return CONVERSION_PLUGIN;
     }
 
+    /**
+     * Retrieve the {@link SparkMLPlugin}.
+     *
+     * @return the {@link SparkMLPlugin}
+     */
+    public static SparkMLPlugin mlPlugin() {
+        return ML_PLUGIN;
+    }
+
     /**
      * Retrieve the {@link SparkPlatform}.
      *
diff --git 
a/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/mapping/Mappings.java
 
b/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/mapping/Mappings.java
index 046fb280..484b6c30 100644
--- 
a/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/mapping/Mappings.java
+++ 
b/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/mapping/Mappings.java
@@ -20,6 +20,7 @@ package org.apache.wayang.spark.mapping;
 
 import org.apache.wayang.core.mapping.Mapping;
 import org.apache.wayang.spark.mapping.graph.PageRankMapping;
+import org.apache.wayang.spark.mapping.ml.KMeansMapping;
 
 import java.util.Arrays;
 import java.util.Collection;
@@ -63,4 +64,8 @@ public class Mappings {
             new PageRankMapping()
     );
 
+    public static Collection<Mapping> ML_MAPPINGS = Arrays.asList(
+            new KMeansMapping()
+    );
+
 }
diff --git 
a/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/mapping/ml/KMeansMapping.java
 
b/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/mapping/ml/KMeansMapping.java
new file mode 100644
index 00000000..3da37d89
--- /dev/null
+++ 
b/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/mapping/ml/KMeansMapping.java
@@ -0,0 +1,38 @@
+package org.apache.wayang.spark.mapping.ml;
+
+import org.apache.wayang.basic.operators.KMeansOperator;
+import org.apache.wayang.core.mapping.*;
+import org.apache.wayang.spark.operators.ml.SparkKMeansOperator;
+import org.apache.wayang.spark.platform.SparkPlatform;
+
+import java.util.Collection;
+import java.util.Collections;
+
+/**
+ * Mapping from {@link KMeansOperator} to {@link SparkKMeansOperator}.
+ */
+@SuppressWarnings("unchecked")
+public class KMeansMapping implements Mapping {
+
+    @Override
+    public Collection<PlanTransformation> getTransformations() {
+        return Collections.singleton(new PlanTransformation(
+                this.createSubplanPattern(),
+                this.createReplacementSubplanFactory(),
+                SparkPlatform.getInstance()
+        ));
+    }
+
+    private SubplanPattern createSubplanPattern() {
+        final OperatorPattern operatorPattern = new OperatorPattern(
+                "kMeans", new KMeansOperator(0), false
+        );
+        return SubplanPattern.createSingleton(operatorPattern);
+    }
+
+    private ReplacementSubplanFactory createReplacementSubplanFactory() {
+        return new ReplacementSubplanFactory.OfSingleOperators<KMeansOperator>(
+                (matchedOperator, epoch) -> new 
SparkKMeansOperator(matchedOperator).at(epoch)
+        );
+    }
+}
diff --git 
a/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/operators/ml/SparkKMeansOperator.java
 
b/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/operators/ml/SparkKMeansOperator.java
new file mode 100644
index 00000000..f4084c03
--- /dev/null
+++ 
b/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/operators/ml/SparkKMeansOperator.java
@@ -0,0 +1,119 @@
+package org.apache.wayang.spark.operators.ml;
+
+import org.apache.spark.api.java.JavaRDD;
+import org.apache.spark.ml.clustering.KMeans;
+import org.apache.spark.ml.clustering.KMeansModel;
+import org.apache.spark.ml.linalg.Vector;
+import org.apache.spark.ml.linalg.Vectors;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Row;
+import org.apache.spark.sql.SparkSession;
+import org.apache.wayang.basic.data.Tuple2;
+import org.apache.wayang.basic.operators.KMeansOperator;
+import org.apache.wayang.core.optimizer.OptimizationContext;
+import org.apache.wayang.core.plan.wayangplan.ExecutionOperator;
+import org.apache.wayang.core.platform.ChannelDescriptor;
+import org.apache.wayang.core.platform.ChannelInstance;
+import org.apache.wayang.core.platform.lineage.ExecutionLineageNode;
+import org.apache.wayang.core.util.Tuple;
+import org.apache.wayang.spark.channels.RddChannel;
+import org.apache.wayang.spark.execution.SparkExecutor;
+import org.apache.wayang.spark.operators.SparkExecutionOperator;
+
+import java.util.*;
+
+public class SparkKMeansOperator extends KMeansOperator implements 
SparkExecutionOperator {
+
+    public SparkKMeansOperator(int k) {
+        super(k);
+    }
+
+    public SparkKMeansOperator(KMeansOperator that) {
+        super(that);
+    }
+
+    @Override
+    public List<ChannelDescriptor> getSupportedInputChannels(int index) {
+        // TODO need DataFrameChannel?
+        return Arrays.asList(RddChannel.UNCACHED_DESCRIPTOR, 
RddChannel.CACHED_DESCRIPTOR);
+    }
+
+    @Override
+    public List<ChannelDescriptor> getSupportedOutputChannels(int index) {
+        // TODO need DataFrameChannel?
+        return Collections.singletonList(RddChannel.UNCACHED_DESCRIPTOR);
+    }
+
+    @Override
+    public Tuple<Collection<ExecutionLineageNode>, 
Collection<ChannelInstance>> evaluate(
+            ChannelInstance[] inputs,
+            ChannelInstance[] outputs,
+            SparkExecutor sparkExecutor,
+            OptimizationContext.OperatorContext operatorContext) {
+        assert inputs.length == this.getNumInputs();
+        assert outputs.length == this.getNumInputs();
+
+        final RddChannel.Instance input = (RddChannel.Instance) inputs[0];
+        final RddChannel.Instance output = (RddChannel.Instance) outputs[0];
+
+        final JavaRDD<double[]> inputRdd = input.provideRdd();
+        final JavaRDD<Data> dataRdd = inputRdd.map(Data::new);
+        final Dataset<Row> df = 
SparkSession.builder().getOrCreate().createDataFrame(dataRdd, Data.class);
+        final KMeansModel model = new KMeans()
+                .setK(this.k)
+                .fit(df);
+
+        final Dataset<Row> transform = model.transform(df);
+        final JavaRDD<Tuple2<double[], Integer>> outputRdd = 
transform.toJavaRDD()
+                .map(row -> new Tuple2<>(((Vector) row.get(0)).toArray(), 
(Integer) row.get(1)));
+
+        this.name(outputRdd);
+        output.accept(outputRdd, sparkExecutor);
+
+        return ExecutionOperator.modelLazyExecution(inputs, outputs, 
operatorContext);
+    }
+
+    // TODO support fit and transform
+
+    @Override
+    public boolean containsAction() {
+        return false;
+    }
+
+    public static class Data {
+        private final Vector features;
+
+
+        public Data(Vector features) {
+            this.features = features;
+        }
+
+        public Data(double[] features) {
+            this.features = Vectors.dense(features);
+        }
+
+        public Vector getFeatures() {
+            return features;
+        }
+
+        @Override
+        public String toString() {
+            return "Data{" +
+                    "features=" + features +
+                    '}';
+        }
+
+        @Override
+        public boolean equals(Object o) {
+            if (this == o) return true;
+            if (!(o instanceof Data)) return false;
+            Data data = (Data) o;
+            return Objects.equals(features, data.features);
+        }
+
+        @Override
+        public int hashCode() {
+            return Objects.hash(features);
+        }
+    }
+}
diff --git 
a/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/plugin/SparkMLPlugin.java
 
b/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/plugin/SparkMLPlugin.java
new file mode 100644
index 00000000..55923040
--- /dev/null
+++ 
b/wayang-platforms/wayang-spark/code/main/java/org/apache/wayang/spark/plugin/SparkMLPlugin.java
@@ -0,0 +1,35 @@
+package org.apache.wayang.spark.plugin;
+
+import org.apache.wayang.core.api.Configuration;
+import org.apache.wayang.core.mapping.Mapping;
+import org.apache.wayang.core.optimizer.channels.ChannelConversion;
+import org.apache.wayang.core.platform.Platform;
+import org.apache.wayang.core.plugin.Plugin;
+import org.apache.wayang.spark.mapping.Mappings;
+import org.apache.wayang.spark.platform.SparkPlatform;
+
+import java.util.Collection;
+import java.util.Collections;
+
+public class SparkMLPlugin implements Plugin {
+
+    @Override
+    public Collection<Mapping> getMappings() {
+        return Mappings.ML_MAPPINGS;
+    }
+
+    @Override
+    public Collection<ChannelConversion> getChannelConversions() {
+        return Collections.emptyList();
+    }
+
+    @Override
+    public Collection<Platform> getRequiredPlatforms() {
+        return Collections.singletonList(SparkPlatform.getInstance());
+    }
+
+    @Override
+    public void setProperties(Configuration configuration) {
+        // Nothing to do, because we already configured the properties in 
#configureDefaults(...).
+    }
+}
diff --git 
a/wayang-platforms/wayang-spark/code/test/java/org/apache/wayang/spark/operators/SparkKMeansOperatorTest.java
 
b/wayang-platforms/wayang-spark/code/test/java/org/apache/wayang/spark/operators/SparkKMeansOperatorTest.java
new file mode 100644
index 00000000..71c51129
--- /dev/null
+++ 
b/wayang-platforms/wayang-spark/code/test/java/org/apache/wayang/spark/operators/SparkKMeansOperatorTest.java
@@ -0,0 +1,40 @@
+package org.apache.wayang.spark.operators;
+
+import org.apache.wayang.basic.data.Tuple2;
+import org.apache.wayang.core.platform.ChannelInstance;
+import org.apache.wayang.spark.channels.RddChannel;
+import org.apache.wayang.spark.operators.ml.SparkKMeansOperator;
+import org.junit.Assert;
+import org.junit.Test;
+
+import java.util.Arrays;
+import java.util.List;
+
+public class SparkKMeansOperatorTest extends SparkOperatorTestBase {
+    @Test
+    public void testExecution() {
+        // Prepare test data.
+        RddChannel.Instance input = 
this.createRddChannelInstance(Arrays.asList(
+                new double[]{1, 2, 3},
+                new double[]{-1, -2, -3},
+                new double[]{2, 4, 6}));
+        RddChannel.Instance output = this.createRddChannelInstance();
+
+        SparkKMeansOperator kMeansOperator = new SparkKMeansOperator(2);
+
+        // Set up the ChannelInstances.
+        ChannelInstance[] inputs = new ChannelInstance[]{input};
+        ChannelInstance[] outputs = new ChannelInstance[]{output};
+
+        // Execute.
+        this.evaluate(kMeansOperator, inputs, outputs);
+
+        // Verify the outcome.
+        final List<Tuple2<double[], Integer>> results = 
output.<Tuple2<double[], Integer>>provideRdd().collect();
+        Assert.assertEquals(3, results.size());
+        Assert.assertEquals(
+                results.get(0).field1,
+                results.get(2).field1
+        );
+    }
+}
diff --git a/wayang-platforms/wayang-spark/wayang-spark_2.12/pom.xml 
b/wayang-platforms/wayang-spark/wayang-spark_2.12/pom.xml
index 28731aa2..a706f28f 100644
--- a/wayang-platforms/wayang-spark/wayang-spark_2.12/pom.xml
+++ b/wayang-platforms/wayang-spark/wayang-spark_2.12/pom.xml
@@ -48,6 +48,11 @@
       <artifactId>spark-graphx_2.12</artifactId>
       <version>${spark.version}</version>
     </dependency>
+    <dependency>
+      <groupId>org.apache.spark</groupId>
+      <artifactId>spark-mllib_2.12</artifactId>
+      <version>${spark.version}</version>
+    </dependency>
     <!--Error of ArrayIndexOutOfBoundsException-->
     <dependency>
       <groupId>com.thoughtworks.paranamer</groupId>
diff --git 
a/wayang-tests-integration/code/test/java/org/apache/wayang/tests/SparkIntegrationIT.java
 
b/wayang-tests-integration/code/test/java/org/apache/wayang/tests/SparkIntegrationIT.java
index 7323f8da..77a6ff45 100644
--- 
a/wayang-tests-integration/code/test/java/org/apache/wayang/tests/SparkIntegrationIT.java
+++ 
b/wayang-tests-integration/code/test/java/org/apache/wayang/tests/SparkIntegrationIT.java
@@ -18,12 +18,11 @@
 
 package org.apache.wayang.tests;
 
-import org.junit.Assert;
-import org.junit.Test;
 import org.apache.wayang.basic.WayangBasics;
 import org.apache.wayang.basic.data.Tuple2;
 import org.apache.wayang.basic.operators.CollectionSource;
 import org.apache.wayang.basic.operators.FilterOperator;
+import org.apache.wayang.basic.operators.KMeansOperator;
 import org.apache.wayang.basic.operators.LocalCallbackSink;
 import org.apache.wayang.core.api.Configuration;
 import org.apache.wayang.core.api.Job;
@@ -34,21 +33,17 @@ import org.apache.wayang.core.function.PredicateDescriptor;
 import org.apache.wayang.core.plan.wayangplan.WayangPlan;
 import org.apache.wayang.core.types.DataSetType;
 import org.apache.wayang.core.util.WayangCollections;
+import org.apache.wayang.java.Java;
 import org.apache.wayang.spark.Spark;
 import org.apache.wayang.tests.platform.MyMadeUpPlatform;
+import org.junit.Assert;
+import org.junit.Test;
 
 import java.io.IOException;
 import java.net.URISyntaxException;
 import java.nio.file.Files;
 import java.nio.file.Paths;
-import java.util.ArrayList;
-import java.util.Arrays;
-import java.util.Collection;
-import java.util.Collections;
-import java.util.HashSet;
-import java.util.LinkedList;
-import java.util.List;
-import java.util.Set;
+import java.util.*;
 import java.util.stream.Collectors;
 import java.util.stream.Stream;
 
@@ -457,6 +452,44 @@ public class SparkIntegrationIT {
         Assert.assertEquals(expectedValues, collectedValues);
     }
 
+    @Test
+    public void testKMeans() {
+        CollectionSource<double[]> collectionSource = new CollectionSource<>(
+                Arrays.asList(
+                        new double[]{1, 2, 3},
+                        new double[]{-1, -2, -3},
+                        new double[]{2, 4, 6}),
+                double[].class
+        );
+        collectionSource.addTargetPlatform(Java.platform());
+        collectionSource.addTargetPlatform(Spark.platform());
+
+        KMeansOperator kMeansOperator = new KMeansOperator(2);
+
+        // write results to a sink
+        List<Tuple2> results = new ArrayList<>();
+        LocalCallbackSink<Tuple2> sink = 
LocalCallbackSink.createCollectingSink(results, 
DataSetType.createDefault(Tuple2.class));
+
+        // Build Wayang plan by connecting operators
+        collectionSource.connectTo(0, kMeansOperator, 0);
+        kMeansOperator.connectTo(0, sink, 0);
+        WayangPlan wayangPlan = new WayangPlan(sink);
+
+        // Have Wayang execute the plan.
+        WayangContext wayangContext = new WayangContext();
+        wayangContext.register(Java.basicPlugin());
+        wayangContext.register(Spark.basicPlugin());
+        wayangContext.register(Spark.mlPlugin());
+        wayangContext.execute(wayangPlan);
+
+        // Verify the outcome.
+        Assert.assertEquals(3, results.size());
+        Assert.assertEquals(
+                ((Tuple2<double[], Integer>) results.get(0)).field1,
+                ((Tuple2<double[], Integer>) results.get(2)).field1
+        );
+    }
+
     private static class SemijoinFunction implements 
PredicateDescriptor.ExtendedSerializablePredicate<Integer> {
 
         private Set<Integer> allowedInts;

Reply via email to