soumilshah1995 commented on issue #362:
URL:
https://github.com/apache/incubator-xtable/issues/362#issuecomment-1986306167
Tests
```
""""
%%configure -f
{
"conf": {
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.sql.hive.convertMetastoreParquet": "false",
"spark.sql.catalog.spark_catalog":
"org.apache.spark.sql.hudi.catalog.HoodieCatalog",
"spark.sql.legacy.pathOptionBehavior.enabled": "true",
"spark.sql.extensions":
"org.apache.spark.sql.hudi.HoodieSparkSessionExtension"
}
}
%pip install Faker
permanently delete
"""
try:
import sys, random, uuid
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.dynamicframe import DynamicFrame
from pyspark.sql.functions import col, to_timestamp,
monotonically_increasing_id, to_date, when
from pyspark.sql.functions import *
from awsglue.utils import getResolvedOptions
from pyspark.sql.types import *
from datetime import datetime, date
import boto3, pandas
from functools import reduce
from pyspark.sql import Row
from faker import Faker
except Exception as e:
print("Modules are missing : {} ".format(e))
job_start_ts = datetime.now()
ts_format = '%Y-%m-%d %H:%M:%S'
spark = (SparkSession.builder.config('spark.serializer',
'org.apache.spark.serializer.KryoSerializer') \
.config('spark.sql.hive.convertMetastoreParquet', 'false') \
.config('spark.sql.catalog.spark_catalog',
'org.apache.spark.sql.hudi.catalog.HoodieCatalog') \
.config('spark.sql.extensions',
'org.apache.spark.sql.hudi.HoodieSparkSessionExtension') \
.config('spark.sql.legacy.pathOptionBehavior.enabled',
'true').getOrCreate())
sc = spark.sparkContext
glueContext = GlueContext(sc)
job = Job(glueContext)
logger = glueContext.get_logger()
global faker
faker = Faker()
def get_customer_data(total_customers=2):
customers_array = []
for i in range(0, total_customers):
customer_data = {
"customer_id": str(uuid.uuid4()),
"name": faker.name(),
"state": faker.state(),
"city": faker.city(),
"email": faker.email(),
"created_at": datetime.now().isoformat().__str__(),
"address": faker.address(),
}
customers_array.append(customer_data)
return customers_array
def get_orders_data(customer_ids, order_data_sample_size=3):
orders_array = []
for i in range(0, order_data_sample_size):
try:
order_id = uuid.uuid4().__str__()
customer_id = random.choice(customer_ids)
order_data = {
"order_id": order_id,
"name": faker.text(max_nb_chars=20),
"order_value": random.randint(10, 1000).__str__(),
"priority": random.choice(["LOW", "MEDIUM", "HIGH"]),
"order_date": faker.date_between(start_date='-30d',
end_date='today').strftime('%Y-%m-%d'),
"customer_id": customer_id,
}
orders_array.append(order_data)
except Exception as e:
print(e)
return orders_array
def upsert_hudi_table(glue_database, table_name, record_id, precomb_key,
table_type, spark_df, partition_fields,
enable_partition, enable_cleaner, enable_hive_sync,
enable_clustering,
enable_meta_data_indexing,
use_sql_transformer, sql_transformer_query,
target_path, index_type, method='upsert',
clustering_column='default'):
"""
Upserts a dataframe into a Hudi table.
Args:
glue_database (str): The name of the glue database.
table_name (str): The name of the Hudi table.
record_id (str): The name of the field in the dataframe that will be
used as the record key.
precomb_key (str): The name of the field in the dataframe that will
be used for pre-combine.
table_type (str): The Hudi table type (e.g., COPY_ON_WRITE,
MERGE_ON_READ).
spark_df (pyspark.sql.DataFrame): The dataframe to upsert.
partition_fields this is used to parrtition data
enable_partition (bool): Whether or not to enable partitioning.
enable_cleaner (bool): Whether or not to enable data cleaning.
enable_hive_sync (bool): Whether or not to enable syncing with Hive.
use_sql_transformer (bool): Whether or not to use SQL to transform
the dataframe before upserting.
sql_transformer_query (str): The SQL query to use for data
transformation.
target_path (str): The path to the target Hudi table.
method (str): The Hudi write method to use (default is 'upsert').
index_type : BLOOM or GLOBAL_BLOOM
Returns:
None
"""
# These are the basic settings for the Hoodie table
hudi_final_settings = {
"hoodie.table.name": table_name,
"hoodie.datasource.write.table.type": table_type,
"hoodie.datasource.write.operation": method,
"hoodie.datasource.write.recordkey.field": record_id,
"hoodie.datasource.write.precombine.field": precomb_key,
}
# These settings enable syncing with Hive
hudi_hive_sync_settings = {
"hoodie.parquet.compression.codec": "gzip",
"hoodie.datasource.hive_sync.enable": "true",
"hoodie.datasource.hive_sync.database": glue_database,
"hoodie.datasource.hive_sync.table": table_name,
"hoodie.datasource.hive_sync.partition_extractor_class":
"org.apache.hudi.hive.MultiPartKeysValueExtractor",
"hoodie.datasource.hive_sync.use_jdbc": "false",
"hoodie.datasource.hive_sync.mode": "hms",
}
# These settings enable automatic cleaning of old data
hudi_cleaner_options = {
"hoodie.clean.automatic": "true",
"hoodie.clean.async": "true",
"hoodie.cleaner.policy": 'KEEP_LATEST_FILE_VERSIONS',
"hoodie.cleaner.fileversions.retained": "3",
"hoodie-conf hoodie.cleaner.parallelism": '200',
'hoodie.cleaner.commits.retained': 5
}
# These settings enable partitioning of the data
partition_settings = {
"hoodie.datasource.write.partitionpath.field": partition_fields,
"hoodie.datasource.hive_sync.partition_fields": partition_fields,
"hoodie.datasource.write.hive_style_partitioning": "true",
}
hudi_clustering = {
"hoodie.clustering.execution.strategy.class":
"org.apache.hudi.client.clustering.run.strategy.SparkSortAndSizeExecutionStrategy",
"hoodie.clustering.inline": "true",
"hoodie.clustering.plan.strategy.sort.columns": clustering_column,
"hoodie.clustering.plan.strategy.target.file.max.bytes":
"1073741824",
"hoodie.clustering.plan.strategy.small.file.limit": "629145600"
}
# Define a dictionary with the index settings for Hudi
hudi_index_settings = {
"hoodie.index.type": index_type, # Specify the index type for Hudi
}
# Define a dictionary with the Fiel Size
hudi_file_size = {
"hoodie.parquet.max.file.size": 512 * 1024 * 1024, # 512MB
"hoodie.parquet.small.file.limit": 104857600, # 100MB
}
hudi_meta_data_indexing = {
"hoodie.metadata.enable": "true",
"hoodie.metadata.index.async": "true",
"hoodie.metadata.index.column.stats.enable": "true",
"hoodie.metadata.index.check.timeout.seconds": "60",
"hoodie.write.concurrency.mode": "optimistic_concurrency_control",
"hoodie.write.lock.provider":
"org.apache.hudi.client.transaction.lock.InProcessLockProvider"
}
if enable_meta_data_indexing == True or enable_meta_data_indexing ==
"True" or enable_meta_data_indexing == "true":
for key, value in hudi_meta_data_indexing.items():
hudi_final_settings[key] = value # Add the key-value pair to
the final settings dictionary
if enable_clustering == True or enable_clustering == "True" or
enable_clustering == "true":
for key, value in hudi_clustering.items():
hudi_final_settings[key] = value # Add the key-value pair to
the final settings dictionary
# Add the Hudi index settings to the final settings dictionary
for key, value in hudi_index_settings.items():
hudi_final_settings[key] = value # Add the key-value pair to the
final settings dictionary
for key, value in hudi_file_size.items():
hudi_final_settings[key] = value # Add the key-value pair to the
final settings dictionary
# If partitioning is enabled, add the partition settings to the final
settings
if enable_partition == "True" or enable_partition == "true" or
enable_partition == True:
for key, value in partition_settings.items():
hudi_final_settings[key] = value
# If data cleaning is enabled, add the cleaner options to the final
settings
if enable_cleaner == "True" or enable_cleaner == "true" or
enable_cleaner == True:
for key, value in hudi_cleaner_options.items():
hudi_final_settings[key] = value
# If Hive syncing is enabled, add the Hive sync settings to the final
settings
if enable_hive_sync == "True" or enable_hive_sync == "true" or
enable_hive_sync == True:
for key, value in hudi_hive_sync_settings.items():
hudi_final_settings[key] = value
# If there is data to write, apply any SQL transformations and write to
the target path
if spark_df.count() > 0:
if use_sql_transformer == "True" or use_sql_transformer == "true" or
use_sql_transformer == True:
spark_df.createOrReplaceTempView("temp")
spark_df = spark.sql(sql_transformer_query)
spark_df.write.format("hudi"). \
options(**hudi_final_settings). \
mode("append"). \
save(target_path)
# Define total number of customers and order data sample size
total_customers = 10
order_data_sample_size = 20
# Generate customer data
customer_data = get_customer_data(total_customers=total_customers)
# Generate order data
order_data = get_orders_data(
order_data_sample_size=order_data_sample_size,
customer_ids=[i.get("customer_id") for i in customer_data]
)
# Define schema for customer data
customer_schema = StructType([
StructField("customer_id", StringType(), nullable=False),
StructField("name", StringType(), nullable=True),
StructField("state", StringType(), nullable=False),
StructField("city", StringType(), nullable=False),
StructField("email", StringType(), nullable=False),
StructField("created_at", StringType(), nullable=False),
StructField("address", StringType(), nullable=False)
])
# Create DataFrame for customer data using the defined schema
spark_df_customers = spark.createDataFrame(data=[tuple(i.values()) for i in
customer_data], schema=customer_schema)
# Show the DataFrame
spark_df_customers.show()
# Define schema for order data
order_schema = StructType([
StructField("order_id", StringType(), nullable=False),
StructField("customer_id", StringType(), nullable=False),
StructField("product_id", StringType(), nullable=False),
StructField("quantity", StringType(), nullable=False), # Change to
StringType
StructField("total_price", StringType(), nullable=False), # Change to
StringType
StructField("order_date", StringType(), nullable=False) # Change to
StringType
])
# Create DataFrame for order data using the defined schema
spark_df_orders = spark.createDataFrame(data=[tuple(i.values()) for i in
order_data], schema=order_schema)
# Show the DataFrame
spark_df_orders.show()
BUCKET = "soumil-dev-bucket-1995"
upsert_hudi_table(
glue_database="default",
table_name="customers",
record_id="customer_id",
precomb_key="created_at",
table_type='COPY_ON_WRITE',
partition_fields="state",
method='upsert',
index_type='BLOOM',
enable_partition=True,
enable_cleaner=False,
enable_hive_sync=True,
enable_clustering='False',
clustering_column='default',
enable_meta_data_indexing='false',
use_sql_transformer=False,
sql_transformer_query='default',
target_path=f"s3://{BUCKET}/silver/table_name=customers/",
spark_df=spark_df_customers,
)
upsert_hudi_table(
glue_database="default",
table_name="orders",
record_id="order_id",
precomb_key="order_date",
table_type='COPY_ON_WRITE',
partition_fields="default",
method='upsert',
index_type='BLOOM',
enable_partition=False,
enable_cleaner=False,
enable_hive_sync=True,
enable_clustering='False',
clustering_column='default',
enable_meta_data_indexing='false',
use_sql_transformer=False,
sql_transformer_query='default',
target_path=f"s3://{BUCKET}/silver/table_name=orders/",
spark_df=spark_df_orders,
)
```
# configyml
```
sourceFormat: HUDI
targetFormats:
- ICEBERG
datasets:
-
tableBasePath: s3://soumil-dev-bucket-1995/silver/table_name=customers/
tableName: customers
partitionSpec: state:VALUE
```
# Result
```
J: No SLF4J providers were found.
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See https://www.slf4j.org/codes.html#noProviders for further details.
SLF4J: Class path contains SLF4J bindings targeting slf4j-api versions 1.7.x
or earlier.
SLF4J: Ignoring binding found at
[jar:file:/home/glue_user/workspace/jupyter_workspace/utilities-0.1.0-beta1-bundled.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See https://www.slf4j.org/codes.html#ignoredBindings for an
explanation.
2024-03-08 19:40:15 INFO io.onetable.utilities.RunSync:141 - Running sync
for basePath s3://soumil-dev-bucket-1995/silver/table_name=customers/ for
following table formats [ICEBERG]
2024-03-08 19:40:17 INFO io.onetable.client.OneTableClient:264 - No
previous OneTable sync for target. Falling back to snapshot sync.
# WARNING: Unable to get Instrumentation. Dynamic Attach failed. You may add
this JAR as -javaagent manually, or supply -Djdk.attach.allowAttachSelf
# WARNING: Unable to attach Serviceability Agent. Unable to attach even with
module exceptions: [org.openjdk.jol.vm.sa.SASupportException: Sense failed.,
org.openjdk.jol.vm.sa.SASupportException: Sense failed.,
org.openjdk.jol.vm.sa.SASupportException: Sense failed.]
2024-03-08 19:40:27 INFO io.onetable.client.OneTableClient:127 - OneTable
Sync is successful for the following formats [ICEBERG]
sh-4.2$
sh-4.2$
```
# Solved
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]