This is an automated email from the ASF dual-hosted git repository.

ashvin pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/incubator-xtable.git

commit 7abb7b4cd29bed9de908045139c0ae818202956f
Author: Kyle Weller <[email protected]>
AuthorDate: Tue Mar 5 00:20:32 2024 -0800

    updated logos to have TM, updated all references of XTable to Apache 
XTableTM, removed unused images, and addressed all current comments (forgot to 
git add in prev commit :) )
---
 README.md                                     | 121 +++++++++++++++-----------
 website/README.md                             |   6 +-
 website/blog/OneTable-is-now-Apache-XTable.md |  12 +--
 website/docs/athena.md                        |   6 +-
 website/docs/bigquery.md                      |  10 +--
 website/docs/catalogs-index.md                |   2 +-
 website/docs/demo/docker.md                   |   6 +-
 website/docs/fabric.md                        |  10 +--
 website/docs/features-and-limitations.md      |   4 +-
 website/docs/glue-catalog.md                  |   8 +-
 website/docs/hms.md                           |   2 +-
 website/docs/how-to.md                        |   8 +-
 website/docs/integrations-index.md            |   2 +-
 website/docs/presto.md                        |  14 +--
 website/docs/query-engines-index.md           |   4 +-
 website/docs/redshift.md                      |   4 +-
 website/docs/setup.md                         |   2 +-
 website/docs/snowflake.md                     |   2 +-
 website/docs/spark.md                         |   2 +-
 website/docs/trino.md                         |  10 +--
 website/static/images/xtable-svg.svg          |  82 ++++++++---------
 website/static/images/xtable-white-svg.svg    |  68 ++++++---------
 website/static/images/xtable-white.png        | Bin 60873 -> 60672 bytes
 website/static/images/xtable-words-white.png  | Bin 15321 -> 13975 bytes
 website/static/images/xtable-words.png        | Bin 16972 -> 15930 bytes
 website/static/images/xtable.png              | Bin 77607 -> 77700 bytes
 website/static/index.html                     |  52 +++++------
 27 files changed, 215 insertions(+), 222 deletions(-)

diff --git a/README.md b/README.md
index 6c9b0894..9769dce5 100644
--- a/README.md
+++ b/README.md
@@ -1,73 +1,81 @@
-# Apache XTable (Incubating)
+# Apache XTable™ (Incubating)
 
 [![Build 
Status](https://dev.azure.com/apache-xtable-ci-org/apache-xtable-ci/_apis/build/status%2Fapachextable-ci.xtable-mirror?branchName=main)](https://dev.azure.com/apache-xtable-ci-org/apache-xtable-ci/_build/latest?definitionId=2&branchName=main)
 
-Apache XTable is a cross-table converter for table formats that facilitates 
omni-directional interoperability across data processing systems
-and query engines.
-Currently, XTable supports widely adopted open-source table formats such as 
Apache Hudi, Apache Iceberg, and Delta Lake.
+Apache XTable™ (Incubating) is a cross-table converter for table formats that 
facilitates omni-directional interoperability across
+data processing systems and query engines. Currently, Apache XTable™ supports 
widely adopted open-source table formats such as
+Apache Hudi, Apache Iceberg, and Delta Lake.
 
-XTable simplifies data lake operations by leveraging a common model for table 
representation.
-This allows users to write data in one format while still benefiting from 
integrations and features available in other
-formats.
-For instance, XTable enables existing Hudi users to seamlessly work with 
Databricks's Photon Engine or query Iceberg
-tables with Snowflake.
-Creating transformations from one format to another is straightforward and 
only requires the implementation of a few interfaces,
-which we believe will facilitate the expansion of supported source and target 
formats in the future.
+Apache XTable™ simplifies data lake operations by leveraging a common model 
for table representation. This allows users to write
+data in one format while still benefiting from integrations and features 
available in other formats. For instance,
+Apache XTable™ enables existing Hudi users to seamlessly work with 
Databricks's Photon Engine or query Iceberg tables with
+Snowflake. Creating transformations from one format to another is 
straightforward and only requires the implementation
+of a few interfaces, which we believe will facilitate the expansion of 
supported source and target formats in the
+future.
 
 # Building the project and running tests.
-1. Use Java11 for building the project. If you are using some other java 
version, you can use [jenv](https://github.com/jenv/jenv) to use multiple java 
versions locally.
+
+1. Use Java11 for building the project. If you are using some other java 
version, you can
+   use [jenv](https://github.com/jenv/jenv) to use multiple java versions 
locally.
 2. Build the project using `mvn clean package`. Use `mvn clean package 
-DskipTests` to skip tests while building.
-3. Use `mvn clean test` or `mvn test` to run all unit tests. If you need to 
run only a specific test you can do this
-   by something like `mvn test -Dtest=TestDeltaSync -pl core`.
+3. Use `mvn clean test` or `mvn test` to run all unit tests. If you need to 
run only a specific test you can do this by
+   something like `mvn test -Dtest=TestDeltaSync -pl core`.
 4. Similarly, use `mvn clean verify` or `mvn verify` to run integration tests.
 
 # Style guide
-1. We use [Maven Spotless 
plugin](https://github.com/diffplug/spotless/tree/main/plugin-maven) and 
+
+1. We use [Maven Spotless 
plugin](https://github.com/diffplug/spotless/tree/main/plugin-maven) and
    [Google java format](https://github.com/google/google-java-format) for code 
style.
-2. Use `mvn spotless:check` to find out code style violations and `mvn 
spotless:apply` to fix them. 
-   Code style check is tied to compile phase by default, so code style 
violations will lead to build failures.
+2. Use `mvn spotless:check` to find out code style violations and `mvn 
spotless:apply` to fix them. Code style check is
+   tied to compile phase by default, so code style violations will lead to 
build failures.
 
 # Running the bundled jar
+
 1. Get a pre-built bundled jar or create the jar with `mvn install -DskipTests`
 2. create a yaml file that follows the format below:
+
 ```yaml
 sourceFormat: HUDI
 targetFormats:
   - DELTA
   - ICEBERG
 datasets:
-  -
-    tableBasePath: s3://tpc-ds-datasets/1GB/hudi/call_center
+  - tableBasePath: s3://tpc-ds-datasets/1GB/hudi/call_center
     tableDataPath: s3://tpc-ds-datasets/1GB/hudi/call_center/data
     tableName: call_center
     namespace: my.db
-  -
-    tableBasePath: s3://tpc-ds-datasets/1GB/hudi/catalog_sales
+  - tableBasePath: s3://tpc-ds-datasets/1GB/hudi/catalog_sales
     tableName: catalog_sales
     partitionSpec: cs_sold_date_sk:VALUE
-  -
-    tableBasePath: s3://hudi/multi-partition-dataset
+  - tableBasePath: s3://hudi/multi-partition-dataset
     tableName: multi_partition_dataset
     partitionSpec: time_millis:DAY:yyyy-MM-dd,type:VALUE
-  -
-    tableBasePath: 
abfs://[email protected]/multi-partition-dataset
+  - tableBasePath: 
abfs://[email protected]/multi-partition-dataset
     tableName: multi_partition_dataset
 ```
+
 - `sourceFormat`  is the format of the source table that you want to convert
 - `targetFormats` is a list of formats you want to create from your source 
tables
 - `tableBasePath` is the basePath of the table
-- `tableDataPath` is an optional field specifying the path to the data files. 
If not specified, the tableBasePath will be used. For Iceberg source tables, 
you will need to specify the `/data` path.
+- `tableDataPath` is an optional field specifying the path to the data files. 
If not specified, the tableBasePath will
+  be used. For Iceberg source tables, you will need to specify the `/data` 
path.
 - `namespace` is an optional field specifying the namespace of the table and 
will be used when syncing to a catalog.
-- `partitionSpec` is a spec that allows us to infer partition values. This is 
only required for Hudi source tables. If the table is not partitioned, leave it 
blank. If it is partitioned, you can specify a spec with a comma separated list 
with format `path:type:format`
-  - `path` is a dot separated path to the partition field
-  - `type` describes how the partition value was generated from the column 
value
-    - `VALUE`: an identity transform of field value to partition value
-    - `YEAR`: data is partitioned by a field representing a date and year 
granularity is used
-    - `MONTH`: same as `YEAR` but with month granularity
-    - `DAY`: same as `YEAR` but with day granularity
-    - `HOUR`: same as `YEAR` but with hour granularity
-  - `format`: if your partition type is `YEAR`, `MONTH`, `DAY`, or `HOUR` 
specify the format for the date string as it appears in your file paths
-3. The default implementations of table format clients can be replaced with 
custom implementations by specifying a client configs yaml file in the format 
below:
+- `partitionSpec` is a spec that allows us to infer partition values. This is 
only required for Hudi source tables. If
+  the table is not partitioned, leave it blank. If it is partitioned, you can 
specify a spec with a comma separated list
+  with format `path:type:format`
+    - `path` is a dot separated path to the partition field
+    - `type` describes how the partition value was generated from the column 
value
+        - `VALUE`: an identity transform of field value to partition value
+        - `YEAR`: data is partitioned by a field representing a date and year 
granularity is used
+        - `MONTH`: same as `YEAR` but with month granularity
+        - `DAY`: same as `YEAR` but with day granularity
+        - `HOUR`: same as `YEAR` but with hour granularity
+    - `format`: if your partition type is `YEAR`, `MONTH`, `DAY`, or `HOUR` 
specify the format for the date string as it
+      appears in your file paths
+
+3. The default implementations of table format clients can be replaced with 
custom implementations by specifying a
+   client configs yaml file in the format below:
+
 ```yaml
 # sourceClientProviderClass: The class name of a table format's client 
factory, where the client is
 #     used for reading from a table of this format. All user configurations, 
including hadoop config
@@ -77,15 +85,18 @@ datasets:
 #     used for writing to a table of this format.
 # configuration: A map of configuration values specific to this client.
 tableFormatsClients:
-    HUDI:
-      sourceClientProviderClass: io.onetable.hudi.HudiSourceClientProvider
-    DELTA:
-      targetClientProviderClass: io.onetable.delta.DeltaClient
-      configuration:
-        spark.master: local[2]
-        spark.app.name: onetableclient
+  HUDI:
+    sourceClientProviderClass: io.onetable.hudi.HudiSourceClientProvider
+  DELTA:
+    targetClientProviderClass: io.onetable.delta.DeltaClient
+    configuration:
+      spark.master: local[2]
+      spark.app.name: onetableclient
 ```
-4. A catalog can be used when reading and updating Iceberg tables. The catalog 
can be specified in a yaml file and passed in with the `--icebergCatalogConfig` 
option. The format of the catalog config file is:
+
+4. A catalog can be used when reading and updating Iceberg tables. The catalog 
can be specified in a yaml file and
+   passed in with the `--icebergCatalogConfig` option. The format of the 
catalog config file is:
+
 ```yaml
 catalogImpl: io.my.CatalogImpl
 catalogName: name
@@ -93,20 +104,30 @@ catalogOptions: # all other options are passed through in 
a map
   key1: value1
   key2: value2
 ```
-5. run with `java -jar utilities/target/utilities-0.1.0-SNAPSHOT-bundled.jar 
--datasetConfig my_config.yaml [--hadoopConfig hdfs-site.xml] [--clientsConfig 
clients.yaml] [--icebergCatalogConfig catalog.yaml]`
-The bundled jar includes hadoop dependencies for AWS, Azure, and GCP. 
Authentication for AWS is done with 
-`com.amazonaws.auth.DefaultAWSCredentialsProviderChain`. To override this 
setting, specify a different implementation 
-with the `--awsCredentialsProvider` option.
+
+5. run
+   with `java -jar utilities/target/utilities-0.1.0-SNAPSHOT-bundled.jar 
--datasetConfig my_config.yaml [--hadoopConfig hdfs-site.xml] [--clientsConfig 
clients.yaml] [--icebergCatalogConfig catalog.yaml]`
+   The bundled jar includes hadoop dependencies for AWS, Azure, and GCP. 
Authentication for AWS is done with
+   `com.amazonaws.auth.DefaultAWSCredentialsProviderChain`. To override this 
setting, specify a different implementation
+   with the `--awsCredentialsProvider` option.
 
 # Contributing
+
 ## Setup
+
 For setting up the repo on IntelliJ, open the project and change the java 
version to Java11 in File->ProjectStructure
 ![img.png](style/IDE.png)
 
-You have found a bug, or have a cool idea you that want to contribute to the 
project ? Please file a GitHub issue 
[here](https://github.com/onetable-io/onetable/issues)
+You have found a bug, or have a cool idea you that want to contribute to the 
project ? Please file a GitHub
+issue [here](https://github.com/onetable-io/onetable/issues)
 
 ## Adding a new target format
-Adding a new target format requires a developer implement 
[TargetClient](./api/src/main/java/io/onetable/spi/sync/TargetClient.java). 
Once you have implemented that interface, you can integrate it into the 
[OneTableClient](./core/src/main/java/io/onetable/client/OneTableClient.java). 
If you think others may find that target useful, please raise a Pull Request to 
add it to the project.
+
+Adding a new target format requires a developer
+implement 
[TargetClient](./api/src/main/java/io/onetable/spi/sync/TargetClient.java). 
Once you have implemented that
+interface, you can integrate it into the 
[OneTableClient](./core/src/main/java/io/onetable/client/OneTableClient.java).
+If you think others may find that target useful, please raise a Pull Request 
to add it to the project.
 
 ## Overview of the sync process
+
 ![img.png](assets/images/sync_flow.jpg)
diff --git a/website/README.md b/website/README.md
index 847e989d..74803fb6 100644
--- a/website/README.md
+++ b/website/README.md
@@ -1,6 +1,6 @@
-# Apache XTable (Incubating) Website Source Code
+# Apache XTable™ (Incubating) Website Source Code
 
-This repo hosts the source code of 
[XTable](https://github.com/apache/incubator-xtable)
+This repo hosts the source code of [Apache 
XTable™](https://github.com/apache/incubator-xtable)
 
 ## Prerequisite
 
@@ -63,4 +63,4 @@ npm run serve
 
 
 ## Maintainers
-[XTable Community](https://incubator.apache.org/projects/xtable.html)
+[Apache XTable™ Community](https://incubator.apache.org/projects/xtable.html)
diff --git a/website/blog/OneTable-is-now-Apache-XTable.md 
b/website/blog/OneTable-is-now-Apache-XTable.md
index 6a148a51..b7c768d3 100644
--- a/website/blog/OneTable-is-now-Apache-XTable.md
+++ b/website/blog/OneTable-is-now-Apache-XTable.md
@@ -1,5 +1,5 @@
 ---
-title: "OneTable is now “Apache XTable (Incubating)”"
+title: "OneTable is now “Apache XTable™ (Incubating)”"
 excerpt: "XTable is now Incubating in the Apache Software Foundation"
 author: Dipankar Mazumdar, JB Onofré
 category: blog
@@ -9,7 +9,7 @@ tags:
 - community
 ---
 
-# OneTable is now “Apache XTable (Incubating)”
+# OneTable is now “Apache XTable™ (Incubating)”
 
 Data Lakehouse table formats such as [Apache Hudi](https://hudi.apache.org/), 
[Delta Lake](https://delta.io/), and 
 [Apache Iceberg](https://iceberg.apache.org/) have enabled users to establish 
open foundations for their data architecture. 
@@ -25,7 +25,7 @@ rewrite or duplicate the actual data files.
 The goal of OneTable was to anchor its success in neutrality, guided by strong 
community values. From the very beginning, 
 the project[ expressed its 
desire](https://cwiki.apache.org/confluence/display/INCUBATOR/XTable+Proposal) 
to be incubated 
 under the [Apache Software Foundation](https://www.apache.org/). Today, we are 
excited to announce that OneTable has been 
-accepted as an incubating project by Apache and will henceforth be known as 
**Apache XTable**. As part of the incubation, 
+accepted as an incubating project by Apache and will henceforth be known as 
**Apache XTable™**. As part of the incubation, 
 the project has transitioned the code repository to the Apache infrastructure 
and adopted the 
 [community-driven development principles](https://community.apache.org/) of 
the Apache Foundation.
 
@@ -53,7 +53,7 @@ the public good.
 <img src="/images/blog/XTable/xtable-docs.png" alt="drawing" 
style={{width:'80%', display:'block', marginLeft:'auto', 
 marginRight:'auto', marginTop:'18pt', marginBottom:'18pt'}} />
 
-For those interested in exploring Apache XTable, the official website is a 
good starting point. The documentation 
+For those interested in exploring Apache XTable™, the official website is a 
good starting point. The documentation 
 section hosts a great hands-on [quickstart](https://onetable.dev/docs/how-to) 
guide to getting acquainted with XTable, 
 providing a straightforward way to experience its interoperability 
capabilities firsthand. If you have specific ideas, 
 questions, or seek direct interaction, the 
[discussions](https://github.com/onetable-io/onetable/discussions) section 
@@ -61,7 +61,7 @@ is available for more in-depth exchanges. We invite you to 
contribute to the pro
 filling issues to the [XTable GitHub 
repository](https://github.com/apache/incubator-xtable). Contributions in the 
early 
 phase of the project are going to be critical as we build XTable together. 
Joining the 
 [XTable mailing list](mailto:[email protected]) is another 
excellent way to stay informed and engage with 
-the project. We are really excited about the future of Apache XTable and 
building it together with the vibrant data community.
+the project. We are really excited about the future of Apache XTable™ and 
building it together with the vibrant data community.
 
-Follow Apache XTable on 
[LinkedIn](https://www.linkedin.com/company/apache-xtable/) and 
[Twitter](https://twitter.com/apachextable) 
+Follow Apache XTable™ on 
[LinkedIn](https://www.linkedin.com/company/apache-xtable/) and 
[Twitter](https://twitter.com/apachextable) 
 to keep up with the latest updates!
diff --git a/website/docs/athena.md b/website/docs/athena.md
index 769cd460..7d2969d4 100644
--- a/website/docs/athena.md
+++ b/website/docs/athena.md
@@ -4,7 +4,7 @@ title: "Amazon Athena"
 ---
 
 # Querying from Amazon Athena
-To read a XTable synced target table (regardless of the table format) in 
Amazon Athena,
+To read a Apache XTable™ synced target table (regardless of the table format) 
in Amazon Athena,
 you can create the table either by:
 * Using a DDL statement as mentioned in the following AWS docs:
     * 
[Example](https://docs.aws.amazon.com/athena/latest/ug/querying-hudi.html#querying-hudi-in-athena-creating-hudi-tables)
 for Hudi
@@ -12,8 +12,8 @@ you can create the table either by:
     * 
[Example](https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-creating-tables.html#querying-iceberg-creating-tables-query-editor)
 for Iceberg
 * Or maintain the tables in Glue Data Catalog
 
-For an end to end tutorial that walks through S3, Glue Data Catalog and Athena 
to query a XTable synced table,
-you can refer to the XTable [Glue Data Catalog Guide](/docs/glue-catalog).
+For an end to end tutorial that walks through S3, Glue Data Catalog and Athena 
to query an Apache XTable™ synced table,
+you can refer to the Apache XTable™ [Glue Data Catalog 
Guide](/docs/glue-catalog).
 
 :::danger LIMITATION for Hudi target format:
 To validate the Hudi targetFormat table results, you need to ensure that the 
query engine that you're using
diff --git a/website/docs/bigquery.md b/website/docs/bigquery.md
index d3f64cc4..73a8e3b1 100644
--- a/website/docs/bigquery.md
+++ b/website/docs/bigquery.md
@@ -6,11 +6,11 @@ title: "Google BigQuery"
 # Querying from Google BigQuery
 
 ### Iceberg tables
-To read a XTable synced [Iceberg table from 
BigQuery](https://cloud.google.com/bigquery/docs/iceberg-tables),
+To read an Apache XTable™ (Incubating) synced [Iceberg table from 
BigQuery](https://cloud.google.com/bigquery/docs/iceberg-tables),
 you have two options:
 
 #### [Using Iceberg JSON metadata file to create the Iceberg BigLake 
tables](https://cloud.google.com/bigquery/docs/iceberg-tables#create-using-metadata-file):
-XTable outputs metadata files for Iceberg target format syncs which can be 
used by BigQuery
+Apache XTable™ outputs metadata files for Iceberg target format syncs which 
can be used by BigQuery
 to read the BigLake tables.
 
 ```sql md title="sql"
@@ -48,9 +48,9 @@ If you are not planning on using Iceberg, then you do not 
need to add these to y
 
 
 #### [Using BigLake Metastore to create the Iceberg BigLake 
tables](https://cloud.google.com/bigquery/docs/iceberg-tables#create-using-biglake-metastore):
-You can use two options to register XTable synced Iceberg tables to BigLake 
Metastore:
-* To directly register the XTable synced Iceberg table to BigLake Metastore,
-  follow the [XTable guide to integrate with BigLake 
Metastore](/docs/biglake-metastore)
+You can use two options to register Apache XTable™ synced Iceberg tables to 
BigLake Metastore:
+* To directly register the Apache XTable™ synced Iceberg table to BigLake 
Metastore,
+  follow the [Apache XTable™ guide to integrate with BigLake 
Metastore](/docs/biglake-metastore)
 * Use [stored procedures for 
Spark](https://cloud.google.com/bigquery/docs/spark-procedures)
   on BigQuery to register the table in BigLake Metastore and query the tables 
from BigQuery.
 
diff --git a/website/docs/catalogs-index.md b/website/docs/catalogs-index.md
index 4a9e212a..0a1da307 100644
--- a/website/docs/catalogs-index.md
+++ b/website/docs/catalogs-index.md
@@ -1,6 +1,6 @@
 # Catalogs
 
-Integrating the XTable synced target tables to external catalogs requires an 
explicit registration. This guide will
+Integrating the Apache XTable™ (Incubating) synced target tables to external 
catalogs requires an explicit registration. This guide will
 walk you through the required steps.
 
 In addition to the information in this guide, we recommend you following 
official guidelines from the respective
diff --git a/website/docs/demo/docker.md b/website/docs/demo/docker.md
index c28c4c3f..93f63e33 100644
--- a/website/docs/demo/docker.md
+++ b/website/docs/demo/docker.md
@@ -3,14 +3,14 @@ sidebar_position: 1
 title: "Docker Demo"
 ---
 
-# Building interoperable tables using XTable 
-This demo walks you through a fictional use case and the steps to add 
interoperability between table formats using XTable.
+# Building interoperable tables using Apache XTable™ (Incubating) 
+This demo walks you through a fictional use case and the steps to add 
interoperability between table formats using Apache XTable™.
 For this purpose, a self-contained data infrastructure is brought up as Docker 
containers within your computer.
 
 
 ## Pre-requisites
 * Install Docker in your local machine
-* Clone [XTable GitHub repository](https://github.com/apache/incubator-xtable)
+* Clone [Apache XTable™ GitHub 
repository](https://github.com/apache/incubator-xtable)
 
 :::note NOTE:
 This demo was tested in both x86-64 and AArch64 based macOS operating systems
diff --git a/website/docs/fabric.md b/website/docs/fabric.md
index 0d3f671c..f9ceee6f 100644
--- a/website/docs/fabric.md
+++ b/website/docs/fabric.md
@@ -8,8 +8,8 @@ import TabItem from '@theme/TabItem';
 
 # Querying from Microsoft Fabric
 This guide offers a short tutorial on how to query Apache Iceberg and Apache 
Hudi tables in Microsoft Fabric utilizing 
-the translation capabilities of XTable. This tutorial is intended solely for 
demonstration and to verify the 
-compatibility of XTable's output with Fabric. The tutorial leverages the 
currently[^1] available features in Fabric, like 
+the translation capabilities of Apache XTable™ (Incubating). This tutorial is 
intended solely for demonstration and to verify the 
+compatibility of Apache XTable™'s output with Fabric. The tutorial leverages 
the currently[^1] available features in Fabric, like 
 `Shortcuts`.
 
 
@@ -26,7 +26,7 @@ to data in other file systems.
 
 ## Tutorial
 The objective of the following tutorial is to translate an Iceberg or Hudi 
table in ADLS storage account into Delta Lake
-format using XTable. After translation, this table will be accessible for 
querying from various Fabric engines,
+format using Apache XTable™. After translation, this table will be accessible 
for querying from various Fabric engines,
 including T-SQL, Spark, and Power BI.
 
 ### Pre-requisites
@@ -51,8 +51,8 @@ spark.hadoop.fs.azure.account.oauth2.client.id=<client-id>
 spark.hadoop.fs.azure.account.oauth2.client.secret=<client-secret>
 ```
 
-### Step 2. Translate source table to Delta Lake format using XTable
-This step translates the table `people` originally in Iceberg or Hudi format 
to Delta Lake format using XTable.
+### Step 2. Translate source table to Delta Lake format using Apache XTable™
+This step translates the table `people` originally in Iceberg or Hudi format 
to Delta Lake format using Apache XTable™.
 The primary actions for the translation are documented in 
 [Creating your first interoperable table - Running 
Sync](/docs/how-to#running-sync) tutorial section. 
 However, since the table is in ADLS, you need to update datasets path and 
hadoop configurations.
diff --git a/website/docs/features-and-limitations.md 
b/website/docs/features-and-limitations.md
index c94ffabb..b5a5c8cb 100644
--- a/website/docs/features-and-limitations.md
+++ b/website/docs/features-and-limitations.md
@@ -8,9 +8,9 @@ import TabItem from '@theme/TabItem';
 
 # Features and Limitations
 ## Features
-XTable provides users with the ability to translate metadata from one table 
format to another.  
+Apache XTable™ (Incubating) provides users with the ability to translate 
metadata from one table format to another.  
 
-XTable provides two sync modes, "incremental" and "full." The incremental mode 
is more lightweight and has better performance, especially on large tables. If 
there is anything that prevents the incremental mode from working properly, the 
tool will fall back to the full sync mode.
+Apache XTable™ provides two sync modes, "incremental" and "full." The 
incremental mode is more lightweight and has better performance, especially on 
large tables. If there is anything that prevents the incremental mode from 
working properly, the tool will fall back to the full sync mode.
 
 This sync provides users with the following:   
 1. Syncing of data files along with their column level statistics and 
partition metadata 
diff --git a/website/docs/glue-catalog.md b/website/docs/glue-catalog.md
index 9175de51..ebc6e687 100644
--- a/website/docs/glue-catalog.md
+++ b/website/docs/glue-catalog.md
@@ -7,7 +7,7 @@ import Tabs from '@theme/Tabs';
 import TabItem from '@theme/TabItem';
 
 # Syncing to Glue Data Catalog
-This document walks through the steps to register a XTable synced table in 
Glue Data Catalog on AWS.
+This document walks through the steps to register an Apache XTable™ 
(Incubating) synced table in Glue Data Catalog on AWS.
 
 ## Pre-requisites
 1. Source table(s) (Hudi/Delta/Iceberg) already written to Amazon S3.
@@ -18,12 +18,12 @@ This document walks through the steps to register a XTable 
synced table in Glue
    [AWS 
docs](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html)
 and
    also set up access credentials by following the steps
    
[here](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html)
-3. Clone the XTable [repository](https://github.com/apache/incubator-xtable) 
and create the
+3. Clone the Apache XTable™ 
[repository](https://github.com/apache/incubator-xtable) and create the
    `utilities-0.1.0-SNAPSHOT-bundled.jar` by following the steps on the 
[Installation page](/docs/setup)
 
 ## Steps
 ### Running sync
-Create `my_config.yaml` in the cloned XTable directory.
+Create `my_config.yaml` in the cloned Apache XTable™ directory.
 
 <Tabs
 groupId="table-format"
@@ -193,6 +193,6 @@ SELECT * FROM onetable_synced_db.<table_name>;
 
 ## Conclusion
 In this guide we saw how to,
-1. sync a source table to create metadata for the desired target table formats 
using XTable
+1. sync a source table to create metadata for the desired target table formats 
using Apache XTable™
 2. catalog the data in the target table format in Glue Data Catalog
 3. query the target table using Amazon Athena
diff --git a/website/docs/hms.md b/website/docs/hms.md
index 18c6c7ea..4d7b71f8 100644
--- a/website/docs/hms.md
+++ b/website/docs/hms.md
@@ -7,7 +7,7 @@ import Tabs from '@theme/Tabs';
 import TabItem from '@theme/TabItem';
 
 # Syncing to Hive Metastore
-This document walks through the steps to register a XTable synced table on 
Hive Metastore (HMS).
+This document walks through the steps to register an Apache XTable™ 
(Incubating) synced table on Hive Metastore (HMS).
 
 ## Pre-requisites
 1. Source table(s) (Hudi/Delta/Iceberg) already written to your local storage 
or external storage locations like S3/GCS/ADLS. 
diff --git a/website/docs/how-to.md b/website/docs/how-to.md
index 8b0d5c7b..22f3af7c 100644
--- a/website/docs/how-to.md
+++ b/website/docs/how-to.md
@@ -9,13 +9,13 @@ import TabItem from '@theme/TabItem';
 # Creating your first interoperable table
 
 :::danger Important
-Using XTable to sync your source tables in different target format involves 
running sync on your 
+Using Apache XTable™ (Incubating) to sync your source tables in different 
target format involves running sync on your 
 current dataset using a bundled jar. You can create this bundled jar by 
following the instructions 
-on the [Installation page](/docs/setup). Read through XTable's 
+on the [Installation page](/docs/setup). Read through Apache XTable™'s 
 [GitHub 
page](https://github.com/apache/incubator-xtable#building-the-project-and-running-tests)
 for more information.
 :::
 
-In this tutorial we will look at how to use XTable to add interoperability 
between table formats. 
+In this tutorial we will look at how to use Apache XTable™ to add 
interoperability between table formats. 
 For example, you can expose a table ingested with Hudi as an Iceberg and/or 
Delta Lake table without
 copying or moving the underlying data files used for that table while 
maintaining a similar commit 
 history to enable proper point in time queries.
@@ -23,7 +23,7 @@ history to enable proper point in time queries.
 ## Pre-requisites
 1. A compute instance where you can run Apache Spark. This can be your local 
machine, docker,
    or a distributed service like Amazon EMR, Google Cloud's Dataproc, Azure 
HDInsight etc
-2. Clone the XTable [repository](https://github.com/apache/incubator-xtable) 
and create the
+2. Clone the Apache XTable™ 
[repository](https://github.com/apache/incubator-xtable) and create the
    `utilities-0.1.0-SNAPSHOT-bundled.jar` by following the steps on the 
[Installation page](/docs/setup)
 3. Optional: Setup access to write to and/or read from distributed storage 
services like:
    * Amazon S3 by following the steps 
diff --git a/website/docs/integrations-index.md 
b/website/docs/integrations-index.md
index cc4ddb64..b8b429a0 100644
--- a/website/docs/integrations-index.md
+++ b/website/docs/integrations-index.md
@@ -1,6 +1,6 @@
 # Integrations
 
-This guide will serve as a reference to integrate XTable synced tables to 
various
+This guide will serve as a reference to integrate Apache XTable™ (Incubating) 
synced tables to various
 catalogs and query engines.
 
 In addition to the information in this guide, we recommend you following 
official guidelines
diff --git a/website/docs/presto.md b/website/docs/presto.md
index 2fee5352..6f49da84 100644
--- a/website/docs/presto.md
+++ b/website/docs/presto.md
@@ -9,7 +9,7 @@ import TabItem from '@theme/TabItem';
 # Querying from Presto
 
 Presto allows you to query table formats like Hudi, Delta and Iceberg using 
connectors. The same setup will
-work for XTable synced tables as well.
+work for Apache XTable™ (Incubating) synced tables as well.
 
 For more information and required configurations refer to:
 * [Hudi Connector](https://prestodb.io/docs/current/connector/hudi.html)
@@ -19,12 +19,12 @@ For more information and required configurations refer to:
 :::danger Delta Lake:
 Delta Lake supports [generated 
columns](https://docs.databricks.com/en/delta/generated-columns.html)
 which are a special type of column whose values are automatically generated 
based on a user-specified function
-over other columns in the Delta table. During sync, XTable uses the same logic 
to generate partition columns wherever required. 
-Currently, the generated columns from XTable sync shows `NULL` when queried 
from Presto CLI.
+over other columns in the Delta table. During sync, Apache XTable™ uses the 
same logic to generate partition columns wherever required. 
+Currently, the generated columns from Apache XTable™ sync shows `NULL` when 
queried from Presto CLI.
 :::
 
 For hands on experimentation, please follow [Creating your first interoperable 
table](/docs/how-to) tutorial
-to create XTable synced tables followed by [Hive Metastore](/docs/hms) 
tutorial to register the target table
+to create Apache XTable™ synced tables followed by [Hive Metastore](/docs/hms) 
tutorial to register the target table
 in Hive Metastore. Once done, follow the below high level steps:
 1. If you are working with a self-managed Presto service, from the 
presto-server directory run `./bin/launcher run`
 2. From the directory where you have installed presto-cli: login to presto-cli 
by running `./presto-cli`
@@ -42,7 +42,7 @@ values={[
 <TabItem value="hudi">
 
 :::tip Note: 
-If you are following the example from [Hive Metastore](/docs/hms), you can 
query the XTable synced Hudi table 
+If you are following the example from [Hive Metastore](/docs/hms), you can 
query the Apache XTable™ synced Hudi table 
 from Presto using the below query.
 ```sql md title="sql"
 SELECT * FROM hudi.hudi_db.<table_name>;
@@ -53,7 +53,7 @@ SELECT * FROM hudi.hudi_db.<table_name>;
 <TabItem value="delta">
 
 :::tip Note:
-If you are following the example from [Hive Metastore](/docs/hms), you can 
query the XTable synced Delta table
+If you are following the example from [Hive Metastore](/docs/hms), you can 
query the Apache XTable™ synced Delta table
 from Presto using the below query.
 ```sql md title="sql"
 SELECT * FROM delta.delta_db.<table_name>;
@@ -64,7 +64,7 @@ SELECT * FROM delta.delta_db.<table_name>;
 <TabItem value="iceberg">
 
 :::tip Note:
-If you are following the example from [Hive Metastore](/docs/hms), you can 
query the XTable synced Iceberg table
+If you are following the example from [Hive Metastore](/docs/hms), you can 
query the Apache XTable™ synced Iceberg table
 from Presto using the below query.
 ```sql md title="sql"
 SELECT * FROM iceberg.iceberg_db.<table_name>;
diff --git a/website/docs/query-engines-index.md 
b/website/docs/query-engines-index.md
index 46266259..f852c523 100644
--- a/website/docs/query-engines-index.md
+++ b/website/docs/query-engines-index.md
@@ -1,7 +1,7 @@
 # Query Engines
 
-XTable synced tables behave the similarly to native tables which means you do 
not need any additional configurations
-on query engines' side to work with tables synced by XTable. This guide will 
delve into the details of working 
+Apache XTable™ (Incubating) synced tables behave the similarly to native 
tables which means you do not need any additional configurations
+on query engines' side to work with tables synced by Apache XTable™. This 
guide will delve into the details of working 
 with various query engines.
 For more information on how to sync a source format table to create necessary 
log files to be inferred as a
 different format table, refer to [Creating your first interoperable table 
guide](/docs/how-to)
diff --git a/website/docs/redshift.md b/website/docs/redshift.md
index 17d1ec73..64c2f4b4 100644
--- a/website/docs/redshift.md
+++ b/website/docs/redshift.md
@@ -4,7 +4,7 @@ title: "Amazon Redshift Spectrum"
 ---
 
 # Querying from Redshift Spectrum
-To read a XTable synced target table (regardless of the table format) in 
Amazon Redshift,
+To read a Apache XTable™ synced target table (regardless of the table format) 
in Amazon Redshift,
 users have to create an external schema and refer to the external data catalog 
that contains the table.
 Redshift infers the table's schema and format from the external 
catalog/database directly.
 For more information on creating external schemas, refer to
@@ -41,7 +41,7 @@ You have two options to create and query Delta tables in 
Redshift Spectrum:
 1. Follow the steps in
    
[this](https://docs.delta.io/latest/redshift-spectrum-integration.html#set-up-a-redshift-spectrum-to-delta-lake-integration-and-query-delta-tables)
 
    article to set up a Redshift Spectrum to Delta Lake integration and query 
Delta tables directly from Amazon S3.
-2. While creating the Glue Crawler to crawl the XTable synced Delta table, 
choose the `Create Symlink tables`
+2. While creating the Glue Crawler to crawl the Apache XTable™ synced Delta 
table, choose the `Create Symlink tables`
    option in `Add data source` pop-up window. This will add 
`_symlink_format_manifest` folder with manifest files in the table
    root path.
 
diff --git a/website/docs/setup.md b/website/docs/setup.md
index 029d786a..0b6d70fa 100644
--- a/website/docs/setup.md
+++ b/website/docs/setup.md
@@ -1,6 +1,6 @@
 # Installation
 
-This page covers the essential steps to setup Apache XTable (incubating) in 
your environment.
+This page covers the essential steps to setup Apache XTable™ (incubating) in 
your environment.
 
 ## Pre-requisites
 1. Building the project requires Java 11 and Maven to be setup and configured 
using PATH or environment variables. 
diff --git a/website/docs/snowflake.md b/website/docs/snowflake.md
index 83d87a11..882f8996 100644
--- a/website/docs/snowflake.md
+++ b/website/docs/snowflake.md
@@ -14,7 +14,7 @@ Iceberg on Snowflake is currently supported in
 :::
 
 ## Steps:
-These are high level steps to help you integrate XTable synced Iceberg tables 
on Snowflake. For more additional information
+These are high level steps to help you integrate Apache XTable™ (Incubating) 
synced Iceberg tables on Snowflake. For more additional information
 refer to the [Getting started with Iceberg 
tables](https://docs.snowflake.com/LIMITEDACCESS/iceberg-2023/tables-iceberg-getting-started).
 
 ### Create an external volume
diff --git a/website/docs/spark.md b/website/docs/spark.md
index 876c0300..78945fca 100644
--- a/website/docs/spark.md
+++ b/website/docs/spark.md
@@ -7,7 +7,7 @@ import Tabs from '@theme/Tabs';
 import TabItem from '@theme/TabItem';
 
 # Querying from Apache Spark
-To read a XTable synced target table (regardless of the table format) in 
Apache Spark locally or on services like
+To read a Apache XTable™ (Incubating) synced target table (regardless of the 
table format) in Apache Spark locally or on services like
 Amazon EMR, Google Cloud's Dataproc, Azure HDInsight, or Databricks, you do 
not need additional jars or configs 
 other than what is needed by the respective table formats.
 
diff --git a/website/docs/trino.md b/website/docs/trino.md
index 5ec91169..b870b713 100644
--- a/website/docs/trino.md
+++ b/website/docs/trino.md
@@ -9,7 +9,7 @@ import TabItem from '@theme/TabItem';
 # Querying from Trino
 
 Trino just like Presto allows you to query table formats like Hudi, Delta and 
Iceberg tables using connectors.
-Users do not need additional configurations to work with XTable synced tables.
+Users do not need additional configurations to work with Apache XTable™ 
(Incubating) synced tables.
 
 For more information and required configurations refer to:
 * [Hudi Connector](https://trino.io/docs/current/connector/hudi.html)
@@ -17,7 +17,7 @@ For more information and required configurations refer to:
 * [Iceberg Connector](https://trino.io/docs/current/connector/iceberg.html)
 
 For hands on experimentation, please follow [Creating your first interoperable 
table](/docs/how-to#create-dataset)
-to create XTable synced tables followed by [Hive Metastore](/docs/hms) to 
register the target table
+to create Apache XTable™ synced tables followed by [Hive Metastore](/docs/hms) 
to register the target table
 in Hive Metastore. Once done, please follow the below high level steps:
 1. Start the Trino server manually if you are working with a non-managed Trino 
service:
    from the trino-server directory run `./bin/launcher run`
@@ -36,7 +36,7 @@ values={[
 <TabItem value="hudi">
 
 :::tip Note:
-If you are following the example from [Hive Metastore](/docs/hms), you can 
query the XTable synced Hudi table
+If you are following the example from [Hive Metastore](/docs/hms), you can 
query the Apache XTable™ synced Hudi table
 from Trino using the below query.
 ```sql md title="sql"
 SELECT * FROM hudi.hudi_db.<table_name>;
@@ -47,7 +47,7 @@ SELECT * FROM hudi.hudi_db.<table_name>;
 <TabItem value="delta">
 
 :::tip Note:
-If you are following the example from [Hive Metastore](/docs/hms), you can 
query the XTable synced Delta table
+If you are following the example from [Hive Metastore](/docs/hms), you can 
query the Apache XTable™ synced Delta table
 from Trino using the below query.
 ```sql md title="sql"
 SELECT * FROM delta.delta_db.<table_name>;
@@ -58,7 +58,7 @@ SELECT * FROM delta.delta_db.<table_name>;
 <TabItem value="iceberg">
 
 :::tip Note:
-If you are following the example from [Hive Metastore](/docs/hms), you can 
query the XTable synced Iceberg table
+If you are following the example from [Hive Metastore](/docs/hms), you can 
query the Apache XTable™ synced Iceberg table
 from Trino using the below query.
 ```sql md title="sql"
 SELECT * FROM iceberg.iceberg_db.<table_name>;
diff --git a/website/static/images/xtable-svg.svg 
b/website/static/images/xtable-svg.svg
index 6e310632..73ffcded 100644
--- a/website/static/images/xtable-svg.svg
+++ b/website/static/images/xtable-svg.svg
@@ -1,86 +1,72 @@
-<!--Licensed to the Apache Software Foundation (ASF) under one
-or more contributor license agreements.  See the NOTICE file
-distributed with this work for additional information
-regarding copyright ownership.  The ASF licenses this file
-to you under the Apache License, Version 2.0 (the
-"License"); you may not use this file except in compliance
-with the License.  You may obtain a copy of the License at
-
-http://www.apache.org/licenses/LICENSE-2.0
-
-Unless required by applicable law or agreed to in writing,
-software distributed under the License is distributed on an
-"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-KIND, either express or implied.  See the License for the
-specific language governing permissions and limitations
-under the License.-->
-<svg width="554" height="150" viewBox="0 0 554 150" fill="none" 
xmlns="http://www.w3.org/2000/svg";>
-<g clip-path="url(#clip0_401_458)">
+<svg width="560" height="150" viewBox="0 0 560 150" fill="none" 
xmlns="http://www.w3.org/2000/svg";>
+<g clip-path="url(#clip0_428_7698)">
 <path d="M57.6017 4.95173L32.8815 4.88231L19.633 27.8283L44.3533 
27.8977L57.6017 4.95173Z" fill="#5DA9E5"/>
-<path d="M74.8644 122.144L87.2849 143.517L112.731 143.344L100.648 
122.555L74.8644 122.144Z" fill="#C5C5C5"/>
-<path d="M128.931 27.8275L74.5265 121.561L100.646 122.555L155.297 
27.9015L128.931 27.8275Z" fill="#3587C8"/>
-<path d="M44.3537 27.8983L19.6335 27.8283L87.5302 144.663L112.25 
144.733L44.3537 27.8983Z" fill="url(#paint0_linear_401_458)"/>
-<path d="M20.1692 27.5186L32.5898 48.8918L141.349 49.1998L128.928 
27.8265L20.1692 27.5186Z" fill="url(#paint1_linear_401_458)"/>
-<path d="M100.646 122.556L112.73 143.345L167.716 49.2749L155.295 
27.9017L100.646 122.556Z" fill="url(#paint2_linear_401_458)"/>
-<path d="M56.1866 48.899L112.25 144.734L125.498 121.788L83.4748 
48.8989L56.1866 48.899Z" fill="url(#paint3_linear_401_458)"/>
-<path d="M100.646 122.556L113.254 100.719L125.498 121.788L112.25 
144.734L99.3597 122.552L100.646 122.556Z" fill="url(#paint4_linear_401_458)"/>
-<path d="M155.295 27.9017L167.716 49.2749L180.964 26.3289L168.544 
4.95565L155.295 27.9017Z" fill="url(#paint5_linear_401_458)"/>
-<path d="M128.927 27.8264L155.294 27.9012L113.253 100.718L100.005 
77.9216L128.927 27.8264Z" fill="url(#paint6_linear_401_458)"/>
-<path d="M155.294 27.9012L168.543 4.95529L33.417 4.57226L20.1692 
27.5182L128.927 27.8264L155.294 27.9012Z" fill="url(#paint7_linear_401_458)"/>
-</g>
-<path d="M257.539 124.947L238.054 97.4293L217.846 124.947H210L234.263 
91.928L211.348 59.3584H223.709L241.66 84.7061L260.246 59.3584H268.092L245.452 
90.3061L269.901 124.947H257.539Z" fill="#03659D"/>
-<path d="M285.016 
65.841V59.7041H335.536V65.841H315.24V125.293H305.311V65.841H285.016Z" 
fill="#03659D"/>
-<path d="M380.543 125.293L378.834 117.359C377.573 119.945 375.403 122.06 
372.335 123.715C369.267 125.37 365.595 126.192 361.332 126.192C357.968 126.192 
354.954 125.699 352.313 124.702C349.661 123.704 347.59 122.192 346.089 
120.143C344.587 118.093 343.831 115.507 343.831 112.384C343.831 110.039 344.324 
107.978 345.322 106.203C346.319 104.428 347.678 102.97 349.431 101.831C350.932 
100.691 352.62 99.8141 354.483 99.2114C356.346 98.6086 358.527 98.1703 361.025 
97.9073C363.524 97.6333 366.483 [...]
+<path d="M74.8642 122.144L87.2846 143.517L112.731 143.344L100.648 
122.555L74.8642 122.144Z" fill="#C5C5C5"/>
+<path d="M128.93 27.8275L74.5262 121.561L100.646 122.555L155.297 
27.9015L128.93 27.8275Z" fill="#3587C8"/>
+<path d="M44.3535 27.8983L19.6333 27.8283L87.5299 144.663L112.25 
144.733L44.3535 27.8983Z" fill="url(#paint0_linear_428_7698)"/>
+<path d="M20.1689 27.5186L32.5896 48.8918L141.349 49.1998L128.928 
27.8265L20.1689 27.5186Z" fill="url(#paint1_linear_428_7698)"/>
+<path d="M100.646 122.556L112.73 143.345L167.716 49.2749L155.295 
27.9017L100.646 122.556Z" fill="url(#paint2_linear_428_7698)"/>
+<path d="M56.1864 48.899L112.25 144.734L125.498 121.788L83.4745 
48.8989L56.1864 48.899Z" fill="url(#paint3_linear_428_7698)"/>
+<path d="M100.646 122.556L113.254 100.719L125.498 121.788L112.25 
144.734L99.3595 122.552L100.646 122.556Z" fill="url(#paint4_linear_428_7698)"/>
+<path d="M155.295 27.9017L167.716 49.2749L180.964 26.3289L168.543 
4.95565L155.295 27.9017Z" fill="url(#paint5_linear_428_7698)"/>
+<path d="M128.928 27.8264L155.294 27.9012L113.253 100.718L100.005 
77.9216L128.928 27.8264Z" fill="url(#paint6_linear_428_7698)"/>
+<path d="M155.294 27.9012L168.543 4.95529L33.4173 4.57226L20.1694 
27.5182L128.928 27.8264L155.294 27.9012Z" fill="url(#paint7_linear_428_7698)"/>
+<path d="M257.539 124.947L238.055 97.4293L217.847 124.947H210L234.263 
91.928L211.348 59.3584H223.709L241.66 84.7061L260.246 59.3584H268.093L245.452 
90.3061L269.901 124.947H257.539Z" fill="#03659D"/>
+<path d="M285.016 
65.841V59.7041H335.536V65.841H315.241V125.293H305.312V65.841H285.016Z" 
fill="#03659D"/>
+<path d="M380.544 125.293L378.834 117.359C377.574 119.945 375.404 122.06 
372.335 123.715C369.267 125.37 365.596 126.192 361.333 126.192C357.968 126.192 
354.955 125.699 352.314 124.702C349.662 123.704 347.59 122.192 346.089 
120.143C344.588 118.093 343.832 115.507 343.832 112.384C343.832 110.039 344.325 
107.978 345.322 106.203C346.319 104.428 347.678 102.97 349.432 101.831C350.933 
100.691 352.621 99.8141 354.484 99.2114C356.347 98.6086 358.527 98.1703 361.026 
97.9073C363.525 97.6333 366.48 [...]
 <path d="M452.631 101.38C452.631 106.071 451.677 110.301 449.792 
114.06C447.897 117.819 445.233 120.778 441.803 122.947C438.373 125.117 434.341 
126.191 429.716 126.191C425.628 126.191 422.121 125.336 419.206 123.616C416.291 
121.906 414.023 119.747 412.401 117.161L411.053 
125.282H403.382V56.0986H412.401V85.5121C414.143 83.1121 416.565 81.0957 419.667 
79.4628C422.768 77.8409 426.143 77.03 429.814 77.03C434.505 77.03 438.549 
78.0711 441.946 80.1423C445.343 82.2135 447.973 85.0847 449.836 88 [...]
 <path d="M465.167 125.293V56.0986H474.187V125.293H465.167Z" fill="#03659D"/>
 <path d="M533.365 109.589C533.365 113.381 532.312 116.504 530.208 
118.97C528.104 121.435 525.365 123.255 522 124.427C518.636 125.6 515.052 
126.191 511.261 126.191C506.209 126.191 501.847 125.194 498.176 123.211C494.505 
121.227 491.677 118.4 489.694 114.729C487.71 111.057 486.713 106.729 486.713 
101.742C486.713 96.8657 487.71 92.5698 489.694 88.8438C491.677 85.1178 494.472 
82.2138 498.088 80.1425C501.694 78.0713 505.935 77.0303 510.811 77.0303C517.967 
77.0303 523.622 79.0466 527.776 83.07 [...]
-<path d="M335.734 42.2745C335.734 46.4211 331.847 48.1704 327.7 
48.1704C322.193 48.1704 318.597 44.8338 318.597 39.3266C318.597 33.949 322.063 
30.418 327.441 30.418C332.657 30.418 335.961 33.4955 335.961 38.7111C335.961 
39.197 335.929 39.6505 335.896 40.2013H322.906C323.132 43.2788 324.623 46 327.7 
46C330.097 46 331.523 44.6718 331.523 42.2745H335.734ZM327.441 32.5884C324.493 
32.5884 323.197 35.1152 322.938 38.0632H331.847C331.847 34.9209 330.583 32.5884 
327.441 32.5884Z" fill="#03659D"/>
-<path d="M301.926 38.42V47.847H297.747V23H301.926V33.496C302.898 31.779 
304.874 30.4185 307.693 30.4185C312.131 30.4185 314.819 33.334 314.819 
37.8693V47.847H310.673V38.2904C310.673 35.1805 309.15 33.2368 306.332 
33.2368C303.546 33.2368 301.926 35.5369 301.926 38.42Z" fill="#03659D"/>
-<path d="M293.655 41.821C293.655 45.9352 289.93 48.1704 285.459 
48.1704C280.082 48.1704 276.648 44.769 276.648 39.3914C276.648 34.0786 280.147 
30.418 285.492 30.418C289.8 30.418 293.72 32.6208 293.72 
36.6054V36.9294H289.476C289.476 34.4997 287.921 32.5884 285.492 32.5884C282.09 
32.5884 280.956 35.9899 280.956 39.3914C280.956 42.7929 282.058 45.8704 285.459 
45.8704C288.019 45.8704 289.379 44.0887 289.379 41.4971H293.655V41.821Z" 
fill="#03659D"/>
-<path d="M269.426 47.8465L268.714 45.2225C267.871 46.9718 265.733 48.1704 
262.656 48.1704C259.092 48.1704 256.501 46.5831 256.501 43.214C256.501 41.3351 
257.408 40.0069 258.898 39.0998C260.583 38.0632 262.656 37.7716 265.96 
37.7716C266.9 37.7716 267.871 37.804 268.681 37.8364V36.3463C268.681 34.0138 
267.418 32.5884 265.118 32.5884C262.85 32.5884 261.522 33.7547 261.522 
36.0223H257.44V35.666C257.44 32.4589 260.259 30.418 265.118 30.418C269.459 
30.418 272.86 32.4589 272.86 36.7998V47.8465H [...]
-<path d="M245.432 48.1704C242.517 48.1704 240.541 46.8746 239.569 
45.2873V54.779H235.39V30.7419H239.051L239.536 33.5279C240.411 32.0377 242.16 
30.418 245.432 30.418C250.551 30.418 253.628 34.3378 253.628 39.3266C253.628 
44.4126 250.486 48.1704 245.432 48.1704ZM244.396 32.88C241.091 32.88 239.569 
35.9251 239.569 39.2294C239.569 42.6309 241.027 45.5464 244.46 45.5464C247.797 
45.5464 249.32 42.5661 249.32 39.2294C249.32 35.9575 247.797 32.88 244.396 
32.88Z" fill="#03659D"/>
-<path d="M210 47.8471L218.487 24.2959H224.092L232.547 47.8471H227.525L225.355 
41.6272H215.215L212.948 47.8471H210ZM216.155 39.0032H224.448L220.366 
27.3086L216.155 39.0032Z" fill="#03659D"/>
+<path d="M335.735 42.2745C335.735 46.4211 331.847 48.1704 327.701 
48.1704C322.194 48.1704 318.598 44.8338 318.598 39.3266C318.598 33.949 322.064 
30.418 327.441 30.418C332.657 30.418 335.961 33.4955 335.961 38.7111C335.961 
39.197 335.929 39.6505 335.897 40.2013H322.906C323.133 43.2788 324.623 46 
327.701 46C330.098 46 331.523 44.6718 331.523 42.2745H335.735ZM327.441 
32.5884C324.494 32.5884 323.198 35.1152 322.939 38.0632H331.847C331.847 34.9209 
330.584 32.5884 327.441 32.5884Z" fill="#03659D"/>
+<path d="M301.927 38.42V47.847H297.748V23H301.927V33.496C302.898 31.779 
304.874 30.4185 307.693 30.4185C312.131 30.4185 314.82 33.334 314.82 
37.8693V47.847H310.673V38.2904C310.673 35.1805 309.151 33.2368 306.332 
33.2368C303.546 33.2368 301.927 35.5369 301.927 38.42Z" fill="#03659D"/>
+<path d="M293.656 41.821C293.656 45.9352 289.93 48.1704 285.46 48.1704C280.082 
48.1704 276.648 44.769 276.648 39.3914C276.648 34.0786 280.147 30.418 285.492 
30.418C289.801 30.418 293.721 32.6208 293.721 36.6054V36.9294H289.477C289.477 
34.4997 287.922 32.5884 285.492 32.5884C282.091 32.5884 280.957 35.9899 280.957 
39.3914C280.957 42.7929 282.058 45.8704 285.46 45.8704C288.019 45.8704 289.38 
44.0887 289.38 41.4971H293.656V41.821Z" fill="#03659D"/>
+<path d="M269.427 47.8465L268.714 45.2225C267.872 46.9718 265.734 48.1704 
262.656 48.1704C259.093 48.1704 256.501 46.5831 256.501 43.214C256.501 41.3351 
257.408 40.0069 258.898 39.0998C260.583 38.0632 262.656 37.7716 265.96 
37.7716C266.9 37.7716 267.872 37.804 268.682 37.8364V36.3463C268.682 34.0138 
267.418 32.5884 265.118 32.5884C262.85 32.5884 261.522 33.7547 261.522 
36.0223H257.44V35.666C257.44 32.4589 260.259 30.418 265.118 30.418C269.459 
30.418 272.86 32.4589 272.86 36.7998V47.8465H [...]
+<path d="M245.433 48.1704C242.517 48.1704 240.541 46.8746 239.569 
45.2873V54.779H235.39V30.7419H239.051L239.537 33.5279C240.411 32.0377 242.161 
30.418 245.433 30.418C250.551 30.418 253.629 34.3378 253.629 39.3266C253.629 
44.4126 250.486 48.1704 245.433 48.1704ZM244.396 32.88C241.092 32.88 239.569 
35.9251 239.569 39.2294C239.569 42.6309 241.027 45.5464 244.461 45.5464C247.797 
45.5464 249.32 42.5661 249.32 39.2294C249.32 35.9575 247.797 32.88 244.396 
32.88Z" fill="#03659D"/>
+<path d="M210 47.8471L218.487 24.2959H224.092L232.547 47.8471H227.526L225.355 
41.6272H215.216L212.948 47.8471H210ZM216.155 39.0032H224.448L220.366 
27.3086L216.155 39.0032Z" fill="#03659D"/>
+<path d="M538 
117.984V117H544.888V117.984H542.284V125.724H540.592V117.984H538Z" 
fill="#03659D"/>
+<path d="M548.655 117L551.319 122.784L553.971 
117H556.083V125.724H554.391V118.62L551.475 124.98H550.551L547.611 
118.62V125.724H546.435V117H548.655Z" fill="#03659D"/>
+</g>
 <defs>
-<linearGradient id="paint0_linear_401_458" x1="120.255" y1="27.5423" 
x2="75.1704" y2="149.153" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint0_linear_428_7698" x1="120.254" y1="27.5423" 
x2="75.1702" y2="149.153" gradientUnits="userSpaceOnUse">
 <stop offset="0.0370701" stop-color="#084D7E"/>
 <stop offset="0.403607" stop-color="#10639C"/>
 <stop offset="1" stop-color="#094B79"/>
 </linearGradient>
-<linearGradient id="paint1_linear_401_458" x1="120.255" y1="27.5423" 
x2="75.1704" y2="149.153" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint1_linear_428_7698" x1="120.254" y1="27.5423" 
x2="75.1702" y2="149.153" gradientUnits="userSpaceOnUse">
 <stop offset="0.0370701" stop-color="#084D7E"/>
 <stop offset="0.403607" stop-color="#10639C"/>
 <stop offset="1" stop-color="#094B79"/>
 </linearGradient>
-<linearGradient id="paint2_linear_401_458" x1="135.085" y1="-3.30467" 
x2="100.086" y2="158.052" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint2_linear_428_7698" x1="135.085" y1="-3.30467" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
 <stop offset="0.0774246" stop-color="#1964A0"/>
 <stop offset="0.448809" stop-color="#1A73BA"/>
 <stop offset="0.97652" stop-color="#185D94"/>
 </linearGradient>
-<linearGradient id="paint3_linear_401_458" x1="135.085" y1="-3.30467" 
x2="100.086" y2="158.052" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint3_linear_428_7698" x1="135.085" y1="-3.30467" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
 <stop offset="0.0774246" stop-color="#1964A0"/>
 <stop offset="0.448809" stop-color="#1A73BA"/>
 <stop offset="0.97652" stop-color="#185D94"/>
 </linearGradient>
-<linearGradient id="paint4_linear_401_458" x1="135.085" y1="-3.30467" 
x2="100.086" y2="158.052" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint4_linear_428_7698" x1="135.085" y1="-3.30467" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
 <stop offset="0.0774246" stop-color="#1964A0"/>
 <stop offset="0.448809" stop-color="#1A73BA"/>
 <stop offset="0.97652" stop-color="#185D94"/>
 </linearGradient>
-<linearGradient id="paint5_linear_401_458" x1="135.085" y1="-3.30467" 
x2="100.086" y2="158.052" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint5_linear_428_7698" x1="135.085" y1="-3.30467" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
 <stop offset="0.0774246" stop-color="#1964A0"/>
 <stop offset="0.448809" stop-color="#1A73BA"/>
 <stop offset="0.97652" stop-color="#185D94"/>
 </linearGradient>
-<linearGradient id="paint6_linear_401_458" x1="19.9995" y1="3.22043" 
x2="136.864" y2="80.3391" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint6_linear_428_7698" x1="19.9997" y1="3.22043" 
x2="136.864" y2="80.3391" gradientUnits="userSpaceOnUse">
 <stop stop-color="#64AEE9"/>
 <stop offset="1" stop-color="#277CBF"/>
 </linearGradient>
-<linearGradient id="paint7_linear_401_458" x1="19.9995" y1="3.22043" 
x2="136.864" y2="80.3391" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint7_linear_428_7698" x1="19.9997" y1="3.22043" 
x2="136.864" y2="80.3391" gradientUnits="userSpaceOnUse">
 <stop stop-color="#64AEE9"/>
 <stop offset="1" stop-color="#277CBF"/>
 </linearGradient>
-<clipPath id="clip0_401_458">
-<rect width="161" height="140" fill="white" transform="matrix(-1 0 0 1 181 
5)"/>
+<clipPath id="clip0_428_7698">
+<rect width="560" height="150" fill="white"/>
 </clipPath>
 </defs>
 </svg>
diff --git a/website/static/images/xtable-white-svg.svg 
b/website/static/images/xtable-white-svg.svg
index c1151a00..09cc3bac 100644
--- a/website/static/images/xtable-white-svg.svg
+++ b/website/static/images/xtable-white-svg.svg
@@ -1,86 +1,72 @@
-<!--Licensed to the Apache Software Foundation (ASF) under one
-or more contributor license agreements.  See the NOTICE file
-distributed with this work for additional information
-regarding copyright ownership.  The ASF licenses this file
-to you under the Apache License, Version 2.0 (the
-"License"); you may not use this file except in compliance
-with the License.  You may obtain a copy of the License at
-
-http://www.apache.org/licenses/LICENSE-2.0
-
-Unless required by applicable law or agreed to in writing,
-software distributed under the License is distributed on an
-"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-KIND, either express or implied.  See the License for the
-specific language governing permissions and limitations
-under the License.-->
-<svg width="554" height="150" viewBox="0 0 554 150" fill="none" 
xmlns="http://www.w3.org/2000/svg";>
-<g clip-path="url(#clip0_401_490)">
+<svg width="560" height="150" viewBox="0 0 560 150" fill="none" 
xmlns="http://www.w3.org/2000/svg";>
+<g clip-path="url(#clip0_428_7666)">
 <path d="M57.6018 4.95302L32.8815 4.88297L19.6337 27.8289L44.354 
27.899L57.6018 4.95302Z" fill="#5DA9E5"/>
 <path d="M74.8645 122.145L87.2854 143.519L112.732 143.347L100.648 
122.557L74.8645 122.145Z" fill="#C5C5C5"/>
 <path d="M128.93 27.8301L74.528 121.563L100.648 122.559L155.296 27.9048L128.93 
27.8301Z" fill="#DCDCDC"/>
-<path d="M44.3533 27.9023L19.6331 27.8322L87.5304 144.667L112.251 
144.737L44.3533 27.9023Z" fill="url(#paint0_linear_401_490)"/>
-<path d="M20.1687 27.5225L32.5895 48.8958L141.349 49.2039L128.928 
27.8305L20.1687 27.5225Z" fill="url(#paint1_linear_401_490)"/>
-<path d="M100.647 122.557L112.731 143.346L167.716 49.2762L155.295 
27.9029L100.647 122.557Z" fill="url(#paint2_linear_401_490)"/>
-<path d="M56.1866 48.9L112.25 144.735L125.498 121.789L83.4747 48.9L56.1866 
48.9Z" fill="url(#paint3_linear_401_490)"/>
-<path d="M100.647 122.557L113.255 100.72L125.498 121.789L112.25 144.735L99.36 
122.553L100.647 122.557Z" fill="url(#paint4_linear_401_490)"/>
-<path d="M155.295 27.9029L167.716 49.2762L180.964 26.3302L168.543 
4.9569L155.295 27.9029Z" fill="url(#paint5_linear_401_490)"/>
-<path d="M128.928 27.8264L155.294 27.9012L113.253 100.718L100.005 
77.9217L128.928 27.8264Z" fill="url(#paint6_linear_401_490)"/>
-<path d="M155.294 27.9012L168.543 4.95531L33.4173 4.57226L20.1694 
27.5182L128.928 27.8264L155.294 27.9012Z" fill="url(#paint7_linear_401_490)"/>
+<path d="M44.3533 27.9023L19.6331 27.8322L87.5304 144.667L112.251 
144.737L44.3533 27.9023Z" fill="url(#paint0_linear_428_7666)"/>
+<path d="M20.1687 27.5225L32.5895 48.8958L141.349 49.2039L128.928 
27.8305L20.1687 27.5225Z" fill="url(#paint1_linear_428_7666)"/>
+<path d="M100.647 122.557L112.731 143.346L167.716 49.2762L155.295 
27.9029L100.647 122.557Z" fill="url(#paint2_linear_428_7666)"/>
+<path d="M56.1866 48.9L112.25 144.735L125.498 121.789L83.4747 48.9L56.1866 
48.9Z" fill="url(#paint3_linear_428_7666)"/>
+<path d="M100.647 122.557L113.255 100.72L125.498 121.789L112.25 144.735L99.36 
122.553L100.647 122.557Z" fill="url(#paint4_linear_428_7666)"/>
+<path d="M155.295 27.9029L167.716 49.2762L180.964 26.3302L168.543 
4.9569L155.295 27.9029Z" fill="url(#paint5_linear_428_7666)"/>
+<path d="M128.928 27.8264L155.294 27.9012L113.253 100.718L100.005 
77.9217L128.928 27.8264Z" fill="url(#paint6_linear_428_7666)"/>
+<path d="M155.294 27.9012L168.543 4.95531L33.4173 4.57226L20.1694 
27.5182L128.928 27.8264L155.294 27.9012Z" fill="url(#paint7_linear_428_7666)"/>
 <path d="M257.542 124.946L238.056 97.4266L217.847 124.946H210L234.264 
91.9249L211.348 59.3535H223.71L241.662 84.7027L260.249 59.3535H268.096L245.454 
90.3029L269.904 124.946H257.542Z" fill="#F8F8F8"/>
 <path d="M285.02 
65.8404V59.7031H335.543V65.8404H315.246V125.295H305.317V65.8404H285.02Z" 
fill="#F8F8F8"/>
 <path d="M380.553 125.291L378.844 117.357C377.583 119.943 375.413 122.058 
372.345 123.713C369.276 125.368 365.605 126.19 361.341 126.19C357.977 126.19 
354.963 125.697 352.322 124.699C349.67 123.702 347.598 122.19 346.097 
120.14C344.595 118.091 343.839 115.504 343.839 112.381C343.839 110.036 344.332 
107.975 345.33 106.2C346.327 104.424 347.686 102.967 349.439 101.827C350.941 
100.687 352.629 99.8105 354.492 99.2077C356.355 98.605 358.536 98.1666 361.034 
97.9035C363.533 97.6296 366.492 97.4 [...]
-<path d="M452.644 101.378C452.644 106.069 451.691 110.299 449.806 
114.058C447.91 117.817 445.247 120.776 441.816 122.946C438.386 125.116 434.353 
126.19 429.728 126.19C425.64 126.19 422.133 125.335 419.218 123.615C416.303 
121.905 414.034 119.746 412.412 117.16L411.064 
125.281H403.393V56.0938H412.412V85.5089C414.155 83.1088 416.577 81.0922 419.678 
79.4593C422.78 77.8373 426.155 77.0263 429.827 77.0263C434.517 77.0263 438.561 
78.0674 441.959 80.1387C445.356 82.2101 447.987 85.0815 449.85 88 [...]
-<path d="M465.182 125.292V56.0938H474.202V125.292H465.182Z" fill="#F8F8F8"/>
+<path d="M452.644 101.378C452.644 106.069 451.691 110.299 449.806 
114.058C447.91 117.817 445.247 120.776 441.816 122.946C438.386 125.116 434.353 
126.19 429.728 126.19C425.64 126.19 422.133 125.335 419.218 123.615C416.303 
121.905 414.034 119.746 412.412 117.16L411.064 
125.281H403.393V56.0938H412.412V85.5089C414.155 83.1088 416.577 81.0922 419.678 
79.4593C422.78 77.8373 426.155 77.0263 429.827 77.0263C434.517 77.0263 438.561 
78.0674 441.959 80.1387C445.356 82.2101 447.987 85.0815 449.85 88 [...]
+<path d="M465.182 125.292V56.0938H474.201V125.292H465.182Z" fill="#F8F8F8"/>
 <path d="M533.383 109.586C533.383 113.378 532.331 116.501 530.226 
118.967C528.122 121.433 525.382 123.252 522.018 124.425C518.653 125.598 515.069 
126.189 511.278 126.189C506.225 126.189 501.863 125.192 498.192 123.208C494.521 
121.225 491.693 118.397 489.709 114.726C487.726 111.054 486.729 106.725 486.729 
101.739C486.729 96.8619 487.726 92.5658 489.709 88.8396C491.693 85.1134 494.488 
82.2092 498.104 80.1378C501.71 78.0665 505.951 77.0254 510.828 77.0254C517.985 
77.0254 523.64 79.0419 527. [...]
-<path d="M335.742 42.2742C335.742 46.421 331.854 48.1705 327.707 48.1705C322.2 
48.1705 318.604 44.8336 318.604 39.3261C318.604 33.9482 322.07 30.417 327.448 
30.417C332.664 30.417 335.968 33.4947 335.968 38.7106C335.968 39.1965 335.936 
39.6501 335.904 40.2008H322.912C323.139 43.2785 324.629 45.9999 327.707 
45.9999C330.105 45.9999 331.53 44.6716 331.53 42.2742H335.742ZM327.448 
32.5876C324.5 32.5876 323.204 35.1145 322.945 38.0626H331.854C331.854 34.9202 
330.59 32.5876 327.448 32.5876Z" fil [...]
-<path d="M301.932 38.4209V47.8484H297.753V23H301.932V33.4966C302.904 31.7795 
304.88 30.4189 307.699 30.4189C312.137 30.4189 314.826 33.3346 314.826 
37.8702V47.8484H310.679V38.2913C310.679 35.1812 309.157 33.2374 306.338 
33.2374C303.552 33.2374 301.932 35.5376 301.932 38.4209Z" fill="#F8F8F8"/>
+<path d="M335.741 42.2742C335.741 46.421 331.854 48.1705 327.707 48.1705C322.2 
48.1705 318.604 44.8336 318.604 39.3261C318.604 33.9482 322.07 30.417 327.448 
30.417C332.664 30.417 335.968 33.4947 335.968 38.7106C335.968 39.1965 335.936 
39.6501 335.903 40.2008H322.912C323.139 43.2785 324.629 45.9999 327.707 
45.9999C330.104 45.9999 331.53 44.6716 331.53 42.2742H335.741ZM327.448 
32.5876C324.5 32.5876 323.204 35.1145 322.945 38.0626H331.854C331.854 34.9202 
330.59 32.5876 327.448 32.5876Z" fil [...]
+<path d="M301.932 38.4209V47.8484H297.753V23H301.932V33.4966C302.904 31.7795 
304.88 30.4189 307.699 30.4189C312.137 30.4189 314.826 33.3346 314.826 
37.8702V47.8484H310.679V38.2913C310.679 35.1812 309.156 33.2374 306.338 
33.2374C303.552 33.2374 301.932 35.5376 301.932 38.4209Z" fill="#F8F8F8"/>
 <path d="M293.66 41.8207C293.66 45.9351 289.935 48.1705 285.464 
48.1705C280.086 48.1705 276.652 44.7688 276.652 39.3909C276.652 34.0778 280.151 
30.417 285.496 30.417C289.805 30.417 293.725 32.62 293.725 
36.6048V36.9288H289.481C289.481 34.499 287.926 32.5876 285.496 32.5876C282.095 
32.5876 280.961 35.9893 280.961 39.3909C280.961 42.7926 282.062 45.8703 285.464 
45.8703C288.023 45.8703 289.384 44.0885 289.384 41.4967H293.66V41.8207Z" 
fill="#F8F8F8"/>
-<path d="M269.43 47.8465L268.717 45.2224C267.875 46.9718 265.737 48.1705 
262.659 48.1705C259.096 48.1705 256.504 46.583 256.504 43.2137C256.504 41.3347 
257.411 40.0065 258.901 39.0993C260.586 38.0626 262.659 37.7711 265.964 
37.7711C266.903 37.7711 267.875 37.8035 268.685 37.8359V36.3456C268.685 34.013 
267.422 32.5876 265.121 32.5876C262.854 32.5876 261.525 33.7539 261.525 
36.0216H257.443V35.6653C257.443 32.458 260.262 30.417 265.121 30.417C269.463 
30.417 272.864 32.458 272.864 36.7992V47 [...]
+<path d="M269.43 47.8465L268.718 45.2224C267.875 46.9718 265.737 48.1705 
262.659 48.1705C259.096 48.1705 256.504 46.583 256.504 43.2137C256.504 41.3347 
257.411 40.0065 258.901 39.0993C260.586 38.0626 262.659 37.7711 265.964 
37.7711C266.903 37.7711 267.875 37.8035 268.685 37.8359V36.3456C268.685 34.013 
267.422 32.5876 265.121 32.5876C262.854 32.5876 261.525 33.7539 261.525 
36.0216H257.443V35.6653C257.443 32.458 260.262 30.417 265.121 30.417C269.463 
30.417 272.864 32.458 272.864 36.7992V47 [...]
 <path d="M245.434 48.1705C242.519 48.1705 240.542 46.8746 239.571 
45.2871V54.7794H235.391V30.741H239.052L239.538 33.5271C240.413 32.0368 242.162 
30.417 245.434 30.417C250.553 30.417 253.631 34.337 253.631 39.3261C253.631 
44.4124 250.488 48.1705 245.434 48.1705ZM244.398 32.8792C241.093 32.8792 
239.571 35.9245 239.571 39.2289C239.571 42.6306 241.028 45.5463 244.462 
45.5463C247.799 45.5463 249.322 42.5658 249.322 39.2289C249.322 35.9569 247.799 
32.8792 244.398 32.8792Z" fill="#F8F8F8"/>
 <path d="M210 47.8494L218.488 24.2969H224.093L232.548 47.8494H227.527L225.356 
41.6292H215.216L212.948 47.8494H210ZM216.155 39.005H224.449L220.367 
27.3098L216.155 39.005Z" fill="#F8F8F8"/>
+<path d="M538 
117.984V117H544.888V117.984H542.284V125.724H540.592V117.984H538Z" 
fill="#F8F8F8"/>
+<path d="M548.655 117L551.319 122.784L553.971 
117H556.083V125.724H554.391V118.62L551.475 124.98H550.551L547.611 
118.62V125.724H546.435V117H548.655Z" fill="#F8F8F8"/>
 </g>
 <defs>
-<linearGradient id="paint0_linear_401_490" x1="120.254" y1="27.5464" 
x2="75.17" y2="149.156" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint0_linear_428_7666" x1="120.254" y1="27.5464" 
x2="75.17" y2="149.156" gradientUnits="userSpaceOnUse">
 <stop offset="0.0370701" stop-color="#979696"/>
 <stop offset="0.403607" stop-color="#BBBBBB"/>
 <stop offset="1" stop-color="#7F7F7F"/>
 </linearGradient>
-<linearGradient id="paint1_linear_401_490" x1="120.254" y1="27.5464" 
x2="75.17" y2="149.156" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint1_linear_428_7666" x1="120.254" y1="27.5464" 
x2="75.17" y2="149.156" gradientUnits="userSpaceOnUse">
 <stop offset="0.0370701" stop-color="#979696"/>
 <stop offset="0.403607" stop-color="#BBBBBB"/>
 <stop offset="1" stop-color="#7F7F7F"/>
 </linearGradient>
-<linearGradient id="paint2_linear_401_490" x1="135.085" y1="-3.3035" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint2_linear_428_7666" x1="135.085" y1="-3.3035" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
 <stop offset="0.0774246" stop-color="#B1B1B1"/>
 <stop offset="0.448809" stop-color="#D9D9D9"/>
 <stop offset="0.97652" stop-color="#B3B3B3"/>
 </linearGradient>
-<linearGradient id="paint3_linear_401_490" x1="135.085" y1="-3.3035" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint3_linear_428_7666" x1="135.085" y1="-3.3035" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
 <stop offset="0.0774246" stop-color="#B1B1B1"/>
 <stop offset="0.448809" stop-color="#D9D9D9"/>
 <stop offset="0.97652" stop-color="#B3B3B3"/>
 </linearGradient>
-<linearGradient id="paint4_linear_401_490" x1="135.085" y1="-3.3035" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint4_linear_428_7666" x1="135.085" y1="-3.3035" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
 <stop offset="0.0774246" stop-color="#B1B1B1"/>
 <stop offset="0.448809" stop-color="#D9D9D9"/>
 <stop offset="0.97652" stop-color="#B3B3B3"/>
 </linearGradient>
-<linearGradient id="paint5_linear_401_490" x1="135.085" y1="-3.3035" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint5_linear_428_7666" x1="135.085" y1="-3.3035" 
x2="100.085" y2="158.052" gradientUnits="userSpaceOnUse">
 <stop offset="0.0774246" stop-color="#B1B1B1"/>
 <stop offset="0.448809" stop-color="#D9D9D9"/>
 <stop offset="0.97652" stop-color="#B3B3B3"/>
 </linearGradient>
-<linearGradient id="paint6_linear_401_490" x1="19.9997" y1="3.22043" 
x2="136.864" y2="80.339" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint6_linear_428_7666" x1="19.9997" y1="3.22043" 
x2="136.864" y2="80.339" gradientUnits="userSpaceOnUse">
 <stop stop-color="white"/>
 <stop offset="1" stop-color="#EAEAEA"/>
 </linearGradient>
-<linearGradient id="paint7_linear_401_490" x1="19.9997" y1="3.22043" 
x2="136.864" y2="80.339" gradientUnits="userSpaceOnUse">
+<linearGradient id="paint7_linear_428_7666" x1="19.9997" y1="3.22043" 
x2="136.864" y2="80.339" gradientUnits="userSpaceOnUse">
 <stop stop-color="white"/>
 <stop offset="1" stop-color="#EAEAEA"/>
 </linearGradient>
-<clipPath id="clip0_401_490">
-<rect width="554" height="150" fill="white"/>
+<clipPath id="clip0_428_7666">
+<rect width="560" height="150" fill="white"/>
 </clipPath>
 </defs>
 </svg>
diff --git a/website/static/images/xtable-white.png 
b/website/static/images/xtable-white.png
index fd87e6ba..63e16d00 100644
Binary files a/website/static/images/xtable-white.png and 
b/website/static/images/xtable-white.png differ
diff --git a/website/static/images/xtable-words-white.png 
b/website/static/images/xtable-words-white.png
index 7021d96b..72000847 100644
Binary files a/website/static/images/xtable-words-white.png and 
b/website/static/images/xtable-words-white.png differ
diff --git a/website/static/images/xtable-words.png 
b/website/static/images/xtable-words.png
index f1401beb..fe600e0a 100644
Binary files a/website/static/images/xtable-words.png and 
b/website/static/images/xtable-words.png differ
diff --git a/website/static/images/xtable.png b/website/static/images/xtable.png
index 43554889..afb6984a 100644
Binary files a/website/static/images/xtable.png and 
b/website/static/images/xtable.png differ
diff --git a/website/static/index.html b/website/static/index.html
index c9fa1f21..b2407217 100644
--- a/website/static/index.html
+++ b/website/static/index.html
@@ -3,13 +3,13 @@
 <html data-wf-page="65402b66d39d6454e51fabf1" 
data-wf-site="65402b66d39d6454e51fabed">
 <head>
   <meta charset="utf-8">
-  <title>XTable</title>
-  <meta content="XTable is a cross-table interop of lakehouse table formats 
Apache Hudi, Apache Iceberg, and Delta Lake. XTable is NOT a new or separate 
format, XTable provides abstractions and tools for the translation of lakehouse 
table format metadata." name="description">
-  <meta content="XTable" property="og:title">
-  <meta content="XTable is a cross-table interop of lakehouse table formats 
Apache Hudi, Apache Iceberg, and Delta Lake. XTable is NOT a new or separate 
format, XTable provides abstractions and tools for the translation of lakehouse 
table format metadata." property="og:description">
+  <title>Apache XTable™</title>
+  <meta content="Apache XTable™ is a cross-table interop of lakehouse table 
formats Apache Hudi, Apache Iceberg, and Delta Lake. Apache XTable™ is NOT a 
new or separate format, Apache XTable™ provides abstractions and tools for the 
translation of lakehouse table format metadata." name="description">
+  <meta content="Apache XTable™" property="og:title">
+  <meta content="Apache XTable™ is a cross-table interop of lakehouse table 
formats Apache Hudi, Apache Iceberg, and Delta Lake. Apache XTable™ is NOT a 
new or separate format, Apache XTable™ provides abstractions and tools for the 
translation of lakehouse table format metadata." property="og:description">
   <meta 
content="https://uploads-ssl.webflow.com/65402b66d39d6454e51fabed/654c643bf9cebe95d6c3dd50_Group%201562%20(1).png"
 property="og:image">
-  <meta content="XTable" property="twitter:title">
-  <meta content="XTable is a cross-table interop of lakehouse table formats 
Apache Hudi, Apache Iceberg, and Delta Lake. XTable is NOT a new or separate 
format, XTable provides abstractions and tools for the translation of lakehouse 
table format metadata." property="twitter:description">
+  <meta content="Apache XTable™" property="twitter:title">
+  <meta content="Apache XTable™ is a cross-table interop of lakehouse table 
formats Apache Hudi, Apache Iceberg, and Delta Lake. Apache XTable™ is NOT a 
new or separate format, Apache XTable™ provides abstractions and tools for the 
translation of lakehouse table format metadata." property="twitter:description">
   <meta 
content="https://uploads-ssl.webflow.com/65402b66d39d6454e51fabed/654c643bf9cebe95d6c3dd50_Group%201562%20(1).png"
 property="twitter:image">
   <meta property="og:type" content="website">
   <meta content="summary_large_image" name="twitter:card">
@@ -74,7 +74,7 @@
   </section>
   <section class="callout-section">
     <div class="w-layout-blockcontainer container-main w-container">
-      Apache XTable is incubating in the Apache Software Foundation and was 
recently renamed from OneTable
+      Apache XTable™ is incubating in the Apache Software Foundation and was 
recently renamed from OneTable
     </div>
   </section>
   <section class="logo-section">
@@ -90,11 +90,11 @@
   <section class="what-section">
     <div class="w-layout-blockcontainer main-container-why w-container">
       <div class="up-section-why">
-        <h1 class="heading-section why">What is<span class="text-span"> 
XTable?</span></h1>
+        <h1 class="heading-section why">What is<span class="text-span"><br /> 
Apache XTable™?</span></h1>
         <ul role="list" class="list">
-          <li class="list-item why">XTable provides cross-table 
omni-directional interop between lakehouse table formats</li>
-          <li class="list-item why">XTable is NOT a new or separate format, 
XTable provides abstractions and tools for the translation of lakehouse table 
format metadata</li>
-          <li class="list-item why">XTable is formerly known as OneTable</li>
+          <li class="list-item why">Apache XTable™ provides cross-table 
omni-directional interop between lakehouse table formats</li>
+          <li class="list-item why">Apache XTable™ is NOT a new or separate 
format, Apache XTable™ provides abstractions and tools for the translation of 
lakehouse table format metadata</li>
+          <li class="list-item why">Apache XTable™ is formerly known as 
OneTable</li>
         </ul>
       </div>
       <div id="w-node-b5fb012b-3ce1-44e6-09e8-015167aa018f-e51fabf1" 
class="w-layout-layout quick-stack wf-layout-layout">
@@ -105,7 +105,7 @@
           <div class="what-text">Choose your <span 
class="text-span-3">destination</span> format(s)</div>
         </div>
         <div id="w-node-a5b4b7dd-251e-d9a7-855d-46427e19ad9b-e51fabf1" 
class="w-layout-cell what-cell"><img src="images/metadata-1.png" loading="lazy" 
alt="" class="image-4">
-          <div class="what-text">XTable will translate the <span 
class="text-span-3">Metadata</span> layers</div>
+          <div class="what-text">Apache XTable™ will translate the <span 
class="text-span-3">Metadata</span> layers</div>
         </div>
       </div>
     </div>
@@ -113,7 +113,7 @@
   <section class="build-section">
     <div class="w-layout-blockcontainer main-container w-container">
       <div class="left-section">
-        <h1 class="heading-section">Why <span class="text-span">build</span> 
XTable?</h1>
+        <h1 class="heading-section">Why <span 
class="text-span">build</span><br /> Apache XTable™?</h1>
         <ul role="list" class="list">
           <li class="list-item">Choosing a table format is a costly 
evaluation</li>
           <li class="list-item">Each project has rich features that may fit 
different use-cases</li>
@@ -130,7 +130,7 @@
       <div class="div-block-24">
         <div class="right-section-together">
           <h1 class="heading-section-together">Let&#x27;s <span 
class="text-span">build together</span></h1>
-          <div class="text-block">XTable is a community driven open source 
project. Come join us on Github and find easy ways to contribute.</div>
+          <div class="text-block">Apache XTable™ is a community driven open 
source project. Come join us on Github and find easy ways to contribute.</div>
         </div>
         <a href="https://github.com/apache/incubator-xtable"; 
class="primary-button w-button">Try it on GitHub</a>
       </div>
@@ -149,34 +149,34 @@
             <div class="icon-2 accordion-icon">keyboard_arrow_down</div>
           </div>
           <div class="accordion-item-content">
-            <p class="faq-a">XTable reads the existing metadata of your table 
and writes out metadata for one or more other table formats by leveraging the 
existing APIs provided by each table format project. The metadata will be 
persisted under a directory in the base path of your table (_delta_log for 
Delta, metadata for Iceberg, and .hoodie for Hudi). This allows your existing 
data to be read as though it was written using Delta, Hudi, or Iceberg. For 
example, a Spark reader can use s [...]
+            <p class="faq-a">Apache XTable™ reads the existing metadata of 
your table and writes out metadata for one or more other table formats by 
leveraging the existing APIs provided by each table format project. The 
metadata will be persisted under a directory in the base path of your table 
(_delta_log for Delta, metadata for Iceberg, and .hoodie for Hudi). This allows 
your existing data to be read as though it was written using Delta, Hudi, or 
Iceberg. For example, a Spark reader c [...]
           </div>
         </div>
         <div class="accordion-item">
           <div id="q1" class="accordion-item-trigger">
-            <h4 class="accordion-heading"><span><strong class="faq-q">How is 
XTable different from Delta Lake Uniform?</strong></span></h4>
+            <h4 class="accordion-heading"><span><strong class="faq-q">How is 
Apache XTable™ different from Delta Lake Uniform?</strong></span></h4>
             <div class="icon-2 accordion-icon">keyboard_arrow_down</div>
           </div>
           <div class="accordion-item-content">
-            <p class="faq-a">XTable provides abstraction interfaces that allow 
omni-directional interoperability across Delta, Hudi, Iceberg, and any other 
future lakehouse table formats such as Apache Paimon. XTable is a standalone 
github project that provides a neutral space for all the lakehouse table 
formats to constructively collaborate together.<br><br>Delta Lake Uniform is a 
one-directional conversion from Delta Lake to Apache Hudi or Apache Iceberg. 
Uniform is also governed insid [...]
+            <p class="faq-a">Apache XTable™ provides abstraction interfaces 
that allow omni-directional interoperability across Delta, Hudi, Iceberg, and 
any other future lakehouse table formats such as Apache Paimon. Apache XTable™ 
is a standalone github project that provides a neutral space for all the 
lakehouse table formats to constructively collaborate together.<br><br>Delta 
Lake Uniform is a one-directional conversion from Delta Lake to Apache Hudi or 
Apache Iceberg. Uniform is als [...]
           </div>
         </div>
         <div class="accordion-item">
           <div id="q1" class="accordion-item-trigger">
-            <h4 class="accordion-heading"><span><strong class="faq-q">When 
should I consider XTable?</strong></span></h4>
+            <h4 class="accordion-heading"><span><strong class="faq-q">When 
should I consider Apache XTable™?</strong></span></h4>
             <div class="icon-2 accordion-icon">keyboard_arrow_down</div>
           </div>
           <div class="accordion-item-content">
-            <p class="faq-a">XTable can be used to easily switch between any 
of the table formats or even benefit from more than one simultaneously. Some 
organizations use XTable today because they have a diverse ecosystem of tools 
with polarized vendor support of table formats. Some users want lightning fast 
ingestion or indexing from Hudi and photon query accelerations of Delta Lake 
inside of Databricks. Some users want managed table services from Hudi, but 
also want write operations f [...]
+            <p class="faq-a">Apache XTable™ can be used to easily switch 
between any of the table formats or even benefit from more than one 
simultaneously. Some organizations use Apache XTable™ today because they have a 
diverse ecosystem of tools with polarized vendor support of table formats. Some 
users want lightning fast ingestion or indexing from Hudi and photon query 
accelerations of Delta Lake inside of Databricks. Some users want managed table 
services from Hudi, but also want wr [...]
           </div>
         </div>
         <div class="accordion-item">
           <div id="q1" class="accordion-item-trigger">
-            <h4 class="accordion-heading"><span><strong class="faq-q">Does 
XTable work in every cloud?</strong></span></h4>
+            <h4 class="accordion-heading"><span><strong class="faq-q">Does 
Apache XTable™ work in every cloud?</strong></span></h4>
             <div class="icon-2 accordion-icon">keyboard_arrow_down</div>
           </div>
           <div class="accordion-item-content">
-            <p class="faq-a">Yes, anywhere that Delta, Iceberg, or Hudi work, 
XTable works.</p>
+            <p class="faq-a">Yes, anywhere that Delta, Iceberg, or Hudi work, 
Apache XTable™ works.</p>
           </div>
         </div>
         <div class="accordion-item">
@@ -185,7 +185,7 @@
             <div class="icon-2 accordion-icon">keyboard_arrow_down</div>
           </div>
           <div class="accordion-item-content">
-            <p class="faq-a">1. Hudi and Iceberg MoR tables not 
supported<br>2. Delta Delete Vectors are not supported<br>3. Synchronized 
transaction timestamps<br><br>With XTable you pick one primary format and one 
or more secondary formats. The write operations with the primary format work as 
normal. XTable than translates the metadata from the primary format to the 
secondaries. When committing the metadata of the secondary formats, the 
timestamp of the commit will not be the exact sam [...]
+            <p class="faq-a">1. Hudi and Iceberg MoR tables not 
supported<br>2. Delta Delete Vectors are not supported<br>3. Synchronized 
transaction timestamps<br><br>With Apache XTable™ you pick one primary format 
and one or more secondary formats. The write operations with the primary format 
work as normal. Apache XTable™ than translates the metadata from the primary 
format to the secondaries. When committing the metadata of the secondary 
formats, the timestamp of the commit will not  [...]
           </div>
         </div>
         <div class="accordion-item">
@@ -203,7 +203,7 @@
             <div class="icon-2 accordion-icon">keyboard_arrow_down</div>
           </div>
           <div class="accordion-item-content">
-            <p class="faq-a">Follow XTable community channels on Linkedin and 
Twitter. Become a watcher on Github or reachout directly to any of the Github 
contributors to learn more.</p>
+            <p class="faq-a">Follow Apache XTable™ community channels on 
Linkedin and Twitter. Become a watcher on Github or reachout directly to any of 
the Github contributors to learn more.</p>
           </div>
         </div>
         <div class="accordion-item">
@@ -212,7 +212,7 @@
             <div class="icon-2 accordion-icon">keyboard_arrow_down</div>
           </div>
           <div class="accordion-item-content">
-            <p class="faq-a">Current contributors across Onehouse, Microsoft, 
Google, and others are planning to incubate XTable into the Apache Software 
Foundation. Stay tuned for more updates.</p>
+            <p class="faq-a">Current contributors across Onehouse, Microsoft, 
Google, and others are helping to incubate Apache XTable™ into the Apache 
Software Foundation. Stay tuned for more updates.</p>
           </div>
         </div>
       </div>
@@ -231,8 +231,8 @@
     <div class="footer__bottom text--center"><div class="footer__copyright" 
style="color: white;text-align: center;">
       <div style="margin-top: 20px">
         <a href="https://incubator.apache.org/"; target="_blank"><img 
style="height:40px; margin-bottom: 10px; margin-top: 10px" alt="Apache Software 
Foundation" src="/images/apache-incubator.svg"></a>
-        <p style="text-align:left; font-weight: 300; font-size: 0.8em;">Apache 
XTable is an effort undergoing incubation at The Apache Software Foundation 
(ASF), sponsored by the Apache Incubator. Incubation is required of all newly 
accepted projects until a further review indicates that the infrastructure, 
communications, and decision making process have stabilized in a manner 
consistent with other successful ASF projects. While incubation status is not 
necessarily a reflection of the c [...]
-        <p style="text-align:left; font-weight: 300; font-size: 
0.8em;">Copyright ©2024 Apache XTable, XTable, Apache, the Apache feather logo 
and the Apache XTable project logo are either registered trademarks or 
trademarks of The Apache Software Foundation in the United States and other 
countries.</p>
+        <p style="text-align:left; font-weight: 300; font-size: 0.8em;">Apache 
XTable™ is an effort undergoing incubation at The Apache Software Foundation 
(ASF), sponsored by the Apache Incubator. Incubation is required of all newly 
accepted projects until a further review indicates that the infrastructure, 
communications, and decision making process have stabilized in a manner 
consistent with other successful ASF projects. While incubation status is not 
necessarily a reflection of the  [...]
+        <p style="text-align:left; font-weight: 300; font-size: 
0.8em;">Copyright ©2024 Apache XTable™, XTable, Apache, the Apache feather logo 
and the Apache XTable™ project logo are either registered trademarks or 
trademarks of The Apache Software Foundation in the United States and other 
countries.</p>
       </div>
     </div>
     </div>

Reply via email to