http://git-wip-us.apache.org/repos/asf/zeppelin/blob/085efeb6/notebook/2C2AUG798/note.json
----------------------------------------------------------------------
diff --git a/notebook/2C2AUG798/note.json b/notebook/2C2AUG798/note.json
deleted file mode 100644
index 23ab3df..0000000
--- a/notebook/2C2AUG798/note.json
+++ /dev/null
@@ -1,779 +0,0 @@
-{
-  "paragraphs": [
-    {
-      "text": "%md\n## Introduction\nIn this tutorial we will go through some 
of the basic features of Zeppelin\u0027s built-in matplotlib integration. 
\n\n### Prerequisites\n`matplotlib` must be installed to your local python 
installation. (use `pip install matplotlib` or `conda install matplotlib` if 
you have `conda`). Additionally, you will need Zeppelin\u0027s matplotlib 
backend files which are usually found in `$ZEPPELIN_HOME/lib/python`. Although 
Zeppelin should automatically find this directory, it might be a good idea to 
add it to your `PYTHONPATH` just in case. \n\n### Interpreters\nMost of the 
examples shown in this tutorial can be used interchangeably with either the 
`python` or `pyspark` interpreters. Iterative plotting using the Angular 
Display System is currently only available for `pyspark`, but this 
functionality will eventually be added to the base `python` interpreter. 
\n\n### macOS\nMake sure locale is set, to avoid `ValueError: unknown locale: 
UTF-8`\n\n### virtu
 alenv\nIn case you want to use virtualenv or conda env:\n - configure python 
interpreter property -\u003e `absolute/path/to/venv/bin/python`\n - see 
*Working with Matplotlib in Virtual environments* in the [Matplotlib 
FAQ](http://matplotlib.org/faq/virtualenv_faq.html)\n \n### A simple 
example\nLet\u0027s start by making a very simple line plot:",
-      "user": "anonymous",
-      "dateUpdated": "Dec 17, 2016 3:33:25 PM",
-      "config": {
-        "tableHide": false,
-        "colWidth": 12.0,
-        "editorMode": "ace/mode/text",
-        "editorHide": true,
-        "enabled": true,
-        "results": [
-          {
-            "graph": {
-              "mode": "table",
-              "height": 300.0,
-              "optionOpen": false,
-              "keys": [],
-              "values": [],
-              "groups": [],
-              "scatter": {}
-            }
-          }
-        ],
-        "editorSetting": {
-          "language": "text",
-          "editOnDblClick": false
-        }
-      },
-      "settings": {
-        "params": {},
-        "forms": {}
-      },
-      "apps": [],
-      "jobName": "paragraph_1478123627954_-1473548609",
-      "id": "20160614-174657_1772993700",
-      "results": {
-        "code": "SUCCESS",
-        "msg": [
-          {
-            "type": "HTML",
-            "data": "\u003cdiv 
class\u003d\"markdown-body\"\u003e\n\u003ch2\u003eIntroduction\u003c/h2\u003e\n\u003cp\u003eIn
 this tutorial we will go through some of the basic features of 
Zeppelin\u0026rsquo;s built-in matplotlib integration. 
\u003c/p\u003e\n\u003ch3\u003ePrerequisites\u003c/h3\u003e\n\u003cp\u003e\u003ccode\u003ematplotlib\u003c/code\u003e
 must be installed to your local python installation. (use \u003ccode\u003epip 
install matplotlib\u003c/code\u003e or \u003ccode\u003econda install 
matplotlib\u003c/code\u003e if you have 
\u003ccode\u003econda\u003c/code\u003e). Additionally, you will need 
Zeppelin\u0026rsquo;s matplotlib backend files which are usually found in 
\u003ccode\u003e$ZEPPELIN_HOME/interpreter/lib/python\u003c/code\u003e. 
Although Zeppelin should automatically find this directory, it might be a good 
idea to add it to your \u003ccode\u003ePYTHONPATH\u003c/code\u003e just in 
case. \u003c/p\u003e\n\u003ch3\u003eInterpreters\u003c/h3\u003e\n\u003cp\u003eMo
 st of the examples shown in this tutorial can be used interchangeably with 
either the \u003ccode\u003epython\u003c/code\u003e or 
\u003ccode\u003epyspark\u003c/code\u003e interpreters. Iterative plotting using 
the Angular Display System is currently only available for 
\u003ccode\u003epyspark\u003c/code\u003e, but this functionality will 
eventually be added to the base \u003ccode\u003epython\u003c/code\u003e 
interpreter. 
\u003c/p\u003e\n\u003ch3\u003emacOS\u003c/h3\u003e\n\u003cp\u003eMake sure 
locale is set, to avoid \u003ccode\u003eValueError: unknown locale: 
UTF-8\u003c/code\u003e\u003c/p\u003e\n\u003ch3\u003evirtualenv\u003c/h3\u003e\n\u003cp\u003eIn
 case you want to use virtualenv or conda env:\u003cbr/\u003e - configure 
python interpreter property -\u0026gt; 
\u003ccode\u003eabsolute/path/to/venv/bin/python\u003c/code\u003e\u003cbr/\u003e
 - see \u003cem\u003eWorking with Matplotlib in Virtual 
environments\u003c/em\u003e in the \u003ca 
href\u003d\"http://matplotlib.org/faq/virtual
 env_faq.html\"\u003eMatplotlib 
FAQ\u003c/a\u003e\u003c/p\u003e\n\u003ch3\u003eA simple 
example\u003c/h3\u003e\n\u003cp\u003eLet\u0026rsquo;s start by making a very 
simple line plot:\u003c/p\u003e\n\u003c/div\u003e"
-          }
-        ]
-      },
-      "dateCreated": "Nov 2, 2016 2:53:47 PM",
-      "dateStarted": "Dec 17, 2016 3:33:25 PM",
-      "dateFinished": "Dec 17, 2016 3:33:25 PM",
-      "status": "FINISHED",
-      "progressUpdateIntervalMs": 500
-    },
-    {
-      "text": "%python\nimport matplotlib.pyplot as plt\nplt.plot([1, 2, 3])",
-      "dateUpdated": "Nov 2, 2016 2:53:47 PM",
-      "config": {
-        "colWidth": 12.0,
-        "editorMode": "ace/mode/python",
-        "enabled": true,
-        "results": [
-          {
-            "graph": {
-              "mode": "table",
-              "height": 300.0,
-              "optionOpen": false,
-              "keys": [],
-              "values": [],
-              "groups": [],
-              "scatter": {}
-            }
-          }
-        ]
-      },
-      "settings": {
-        "params": {},
-        "forms": {}
-      },
-      "apps": [],
-      "jobName": "paragraph_1478123627958_-1475087605",
-      "id": "20161101-192232_289486976",
-      "results": {
-        "code": "SUCCESS",
-        "msg": [
-          {
-            "type": "HTML",
-            "data": "\u003cdiv 
style\u003d\u0027width:auto;height:auto\u0027\u003e\u003cimg 
src\u003d
 
N//vOfKSsro1OnTrv+eV5eHuvXr9/1/YYNG8jLy9vjf//HW4uSJOngRVEU9whNJvEN1ubNm6mpqQFgx44dzJkzh/z8/N2u6devH5MmTQKgvLyck08+mdatW+/174uiyD8J+fPXv/419hn843vqH9/PpP5ZsiSiQ4eIG26I+PHH7AlW/5D4Bmvjxo0MHjyYhoYGGhoaGDhwIJdffjkvvvgiOTk5DBs2jMsvv5zZs2fTvn17TjrpJCZOnBj32JIkZaTaWnjkEXj5ZRg3Dvr3j3uieCQ+YHXu3JkVK1bs8c9vu+223b4fN25cU40kSVIirVoFN94IeXlQVQW5uXFPFJ/E3yKU9qW0tDTuEZRivqfJ4vuZOerr4amnoLQURoyAmTOzO1wB5ERRlH03Rg9TTk4O/uuSJOn/rF0LgwdDFMFrr8GZZ+79umz7GWqDJUmSDlkUwauvQrdu0LcvzJu373CVjRL/DJYkSUqtTZvg1lth/foQrM45J+6J0o8NliRJOmhvvgnnngtdusDSpYarfbHBkiRJB/TTTzByJCxZAm+9Bd27xz1RerPBkiRJ+/XBB6G1at48HL9guDowGyxJkrRXv/wCo0aF24KvvAK9e8c9UeawwZIkSXuoqICiIti8GT75xHB1qGywJEnSLjt3wpgxMGECPPccDBgQ90SZyYAlSZIA+PzzsOrm1FOhshJOOy3uiTKXtwglScpyDQ3wzDPQsycMGwazZhmujpQNliRJWWzdOrjppnBrsLwc2rWLe6JksMGSJCkL/WN3YNeucNllsGCB4SqVbLAkScoy338Pt90Ga9aEM666dIl7ouSxwZIkKYvMmBEODc3Ph2XLDFeNxQZLkqQsUFMDd98NH34I06fDBRfEPVGy2WBJkpRw8+aF1uq448KqG8NV47PBkiQpoXbsgAcegKlTw6qbPn3inih72GBJkpRAy5dDcTFUV4dVN4arpmWDJUlSguzcCY8/DuPHw9ixcN11cU+
 
UnQxYkiQlxBdfhFU3LVrAihWQlxf3RNnLW4SSJGW4hoawmLlHDxgyBMrKDFdxs8GSJCmDrV8fQtX27bB4MXToEPdEAhssSZIyUhTB5MnhQfaLLgrnWxmu0ocNliRJGeaHH2D4cFi9Gt5/HwoK4p5If2SDJUlSBnnnnXBoaLt2UFFhuEpXNliSJGWAn3+Ge+6BuXPDwaEXXhj3RNofGyxJktLcwoWhtTrqKFi50nCVCWywJElKU7/+Cg8+CK+/Di+9BFdeGfdEOlgGLEmS0lBlZTg0ND8/rLpp1SruiXQovEUoSVIaqauDRx+F3r1h1CiYNs1wlYlssCRJShOrV8OgQdC8eVjW3KZN3BPpcNlgSZIUsygKy5nPPx9uuAHee89wlelssCRJitGGDXDzzVBTA4sWwVlnxT2RUsEGS5KkGERR+O3AoiLo2dNwlTQ2WJIkNbEtW+D222HVKigrCyFLyWKDJUlSE5o1C7p0Cc9YLV9uuEoqGyxJkprAtm1w771hOfOUKVBaGvdEakw2WJIkNbKPPgqrburqwqobw1Xy2WBJktRIfvsNHnoIJk+GCROgX7+4J1JTMWBJktQIVq4Mq27atw9fn3JK3BOpKXmLUJKkFKqvhyeegEsugfvugzfeMFxlIxssSZJS5KuvYPBgOP54+PhjaNs27okUFxssSZKOUBSFZ6y6d4eBA2HOHMNVtrPBkiTpCHz7LQwdCps3w8KF0LFj3BMpHdhgSZJ0mKZOhcJCOO88WLzYcKX/Y4MlSdIh2roVRoyAqqpwMnvXrnFPpHRjgyVJ0iEoKwurbnJzYcUKw5X2zgZLkqSDsH17OHZh9myYNAl69Yp7IqUzGyxJkg5g8WIoKIAdO+CTTwxXOjAbLEmS9qG2FkaPhokT4fnn4Zpr4p5ImcKAJUnSXnz6aVh1c/rp4WH21q3jnkiZxFuEkiT9Tn09PPlkuA14113w9tuGKx06GyxJkv5uzZqw6uboo6GiAs44
 
I+6JlKlssCRJWS+K4OWXoaQErr0W5s41XOnI2GBJkrLaxo1wyy3w3XewYAF06hT3REoCGyxJUtaaNi0cv1BcDOXlhiuljg2WJCnr/Pgj3HlneM5q5sxwa1BKJRssSVJWmTMnrLpp2RIqKw1Xahw2WJKkrLB9O9x/f2isJk6Eiy+OeyIlmQ2WJCnxysuhsBBqasKqG8OVGpsNliQpsWpr4ZFHwhEM48ZB//5xT6RsYcCSJCXSqlVh1U1eXlh1k5sb90TKJt4ilCQlSn09PPUUlJbCiBHhmSvDlZqaDZYkKTHWrg2rbqIIli6FM8+MeyJlKxssSVLGiyJ49VXo1g369oV58wxXipcNliQpo23aBLfeCuvXh2B1zjlxTyTZYEmSMtibb8K554aDQ5cuNVwpfdhgSZIyzk8/wciRsGQJvPUWdO8e90TS7mywJEkZ5YMPQmvVvHk4fsFwpXSU+IC1YcMGevXqxdlnn03nzp159tln97hmwYIFnHzyyRQVFVFUVMSYMWNimFSStD+//AJ33QU33QQvvQTjx8NJJ8U9lbR3ib9FeMwxx/D0009TUFDAtm3bKC4u5tJLLyU/P3+363r27MnMmTNjmlKStD8VFeHQ0OLisOqmRYu4J5L2L/ENVm5uLgUFBQA0a9aMjh07Ul1dvcd1URQ19WiSpAPYuRP++le48kr4f/8PpkwxXCkzJD5g/d7atWupqqqipKRkj9eWLFlCQUEBV1xxBZ999lkM00mSfu/zz8PzVRUVUFkJAwbEPZF08LImYG3bto3+/fszduxYmjVrtttrxcXFfPPNN1RVVfGXv/yFq6++OqYpJUkNDfDMM9CzJwwbBrNmwWmnxT2VdGgS/wwWQF1dHf379+fGG2/kqquu2uP13weuPn36cMcdd7B161Zatmy5x7WjR4/e9XVpaSmlpaWNMbIkZaV168JD7Dt3Qnk5tGsX90Q6XPPnz2f+/PlxjxGbnCgLHj4aNGgQrVq14
 
umnn97r65s2baJ169YALFu2jAEDBrB27do9rsvJyfFZLUlqBFEE//Vf8G//BvfdF/4cfXTcUymVsu1naOIbrEWLFjFlyhQ6d+5MYWEhOTk5PPbYY6xbt46cnByGDRvG9OnTeeGFFzj22GM54YQTmDp1atxjS1LW+P57uO02WLMmnHHVpUvcE0lHLisarFTJtvQtSY1txgwYPjzcFhw9Go47Lu6J1Fiy7Wdo4hssSVL6qamBu++GDz+E6dPhggvinkhKraz5LUJJUnqYNy+sujnuuLDqxnClJLLBkiQ1iR074IEHYOpUeOUV6NMn7omkxmODJUlqdMuXhzU31dVh1Y3hSklngyVJajQ7d8Ljj4fFzGPHwnXXxT2R1DQMWJKkRvHFF2FBc4sWsGIF5OXFPZHUdLxFKElKqYYGeO456NEDhgyBsjLDlbKPDZYkKWXWrw+havt2WLwYOnSIeyIpHjZYkqQjFkUweXJ4kP2ii8L5VoYrZTMbLEnSEfnhh3Aa++rV8P77UFAQ90RS/GywJEmH7Z13wqGh7dpBRYXhSvoHGyxJ0iH7+We45x6YOzccHHrhhXFPJKUXGyxJ0iFZuDC0VkcdBStXGq6kvbHBkiQdlF9/hQcfhNdfh5degiuvjHsiKX0ZsCRJB1RZGQ4Nzc8Pq25atYp7Iim9eYtQkrRPdXXw6KPQuzeMGgXTphmupINhgyVJ2qvVq2HQIGjePCxrbtMm7omkzGGDJUnaTRSF5cznnw833ADvvWe4kg6VDZYkaZcNG+Dmm6GmBhYtgrPOinsiKTPZYEmSiKLw24FFRdCzp+FKOlI2WJKU5bZsgdtvh1WroKwshCxJR8YGS5Ky2KxZ0KVLeMZq+XLDlZQqNliSlIW2bYN77w3LmadMgdLSuCeSksUGS5KyzEcfhVU3dXVh1Y3hSko9GyxJyhK//QYPPQSTJ8OECdCvX9wTScllwJKkLLByZVh10759+PqUU+KeSEo2bxFKUo
 
LV18MTT8All8B998EbbxiupKZggyVJCfXVVzB4MBx/PHz8MbRtG/dEUvawwZKkhImi8IxV9+4wcCDMmWO4kpqaDZYkJci338LQobB5MyxcCB07xj2RlJ1ssCQpIaZOhcJCOO88WLzYcCXFyQZLkjLc1q0wYgRUVYWT2bt2jXsiSTZYkpTBysrCqpvcXFixwnAlpQsbLEnKQNu3h2MXZs+GSZOgV6+4J5L0ezZYkpRhFi+GggLYsQM++cRwJaUjGyxJyhC1tTB6NEycCM8/D9dcE/dEkvbFgCVJGeDTT8Oqm9NPDw+zt24d90SS9sdbhJKUxurr4cknw23Au+6Ct982XEmZwAZLktLUmjVh1c3RR0NFBZxxRtwTSTpYNliSlGaiCF5+GUpK4NprYe5cw5WUaWywJCmNbNwIt9wC330HCxZAp05xTyTpcNhgSVKamDYtHL9QXAzl5YYrKZPZYElSzH78Ee68MzxnNXNmuDUoKbPZYElSjObMCatuWraEykrDlZQUNliSFIPt2+H++0NjNXEiXHxx3BNJSiUbLElqYuXlUFgINTVh1Y3hSkoeGyxJaiK1tfDII+EIhnHjoH//uCeS1FgMWJLUBFatCqtu8vLCqpvc3LgnktSYvEUoSY2ovh6eegpKS2HEiPDMleFKSj4bLElqJGvXhlU3UQRLl8KZZ8Y9kaSmYoMlSSkWRfDqq9CtG/TtC/PmGa6kbGODJUkptGkT3HorrF8fgtU558Q9kaQ42GBJUoq8+Sace244OHTpUsOVlM1ssCTpCP30E4wcCUuWwFtvQffucU8kKW42WJJ0BD74ILRWzZuH4xcMV5LABkuSDssvv8CoUeG24CuvQO/ecU8kKZ3YYEnSIaqogKIi2Lw5rLoxXEn6IxssSTpIO3fCmDEwYQI89xwMGBD3RJLSlQFLkg7C55+HVTenngqVlXDaaXFPJCmdeYtQkvajoQGeeQZ69oRhw2DWLMOVpAOzwZKkfVi
 
3Dm66KdwaLC+Hdu3inkhSprDBkqQ/iCJ47TXo2hUuuwwWLDBcSTo0NliS9Dvffw+33QZr1oQzrrp0iXsiSZnIBkuS/m7GjHBoaH4+LFtmuJJ0+GywJGW9mhq4+2748EOYPh0uuCDuiSRlOhssSVlt3rzQWh13XFh1Y7iSlAo2WJKy0o4d8MADMHVqWHXTp0/cE0lKEhssSVln+XIoLobq6rDqxnAlKdVssCRljZ074fHHYfx4GDsWrrsu7okkJZUBS1JW+OKLsOqmRQtYsQLy8uKeSFKSeYtQUqI1NITFzD16wJAhUFZmuJLU+BIfsDZs2ECvXr04++yz6dy5M88+++xerxs5ciQdOnSgoKCAqqqqJp5SUmNYvx4uvRRefx0WL4bbb4ecnLinkpQNEh+wjjnmGJ5++mlWrVrFkiVLGD9+PP/zP/+z2zXvvvsuX3/9NV9++SUvvvgiw4cPj2laSakQRTB5cniQ/aKLwvlWHTrEPZWkbJL4Z7Byc3PJzc0FoFmzZnTs2JHq6mry8/N3XTNjxgwGDRoEQElJCTU1NWzatInWrVvHMrOkw/fDDzB8OKxeDe+/DwUFcU8kKRslvsH6vbVr11JVVUVJSclu/7y6upo2bdrs+j4vL4/q6uqmHk/SEXrnnXBoaLt2UFFhuJIUn8Q3WP+wbds2+vfvz9ixY2nWrFnc40hKoZ9/hnvugblzw8GhF14Y90SSsl1WBKy6ujr69+/PjTfeyFVXXbXH63l5eaxfv37X9xs2bCBvH79mNHr06F1fl5aWUlpamupxJR2ChQth8GC4+GJYuRKaN497IkkA8+fPZ/78+XGPEZucKIqiuIdobIMGDaJVq1Y8/fTTe3199uzZjB8/nlmzZlFeXs7dd99NeXn5Htfl5OSQBf+6pIzw66/w4IPhNwRfegmuvDLuiSTtT7b9DE18g7Vo0SKmTJlC586dKSwsJCcnh8cee4x169aRk5PDsGHDuPzyy5k9ezbt
 
27fnpJNOYuLEiXGPLWk/KivDoaH5+WHVTatWcU8kSbvLigYrVbItfUvppq4O/va3sObmP/8Trr/ec62kTJFtP0MT32BJSobVq2HQoPCM1fLl8Ltf/JWktJNVxzRIyjxRFJYzn38+3HADvPee4UpS+rPBkpS2NmyAm2+GmhpYtAjOOivuiSTp4NhgSUo7URR+O7CoCHr2NFxJyjw2WJLSypYtYSnzqlVQVhZCliRlGhssSWlj1izo0iU8Y7V8ueFKUuaywZIUu23b4N57w3LmKVPABQmSMp0NlqRYffRRWNBcVxdW3RiuJCWBDZakWPz2Gzz0EEyeDBMmQL9+cU8kSaljwJLU5FauDKtu2rcPX59yStwTSVJqeYtQUpOpr4cnnoBLLoH77oM33jBcSUomGyxJTeKrr2DwYDj+ePj4Y2jbNu6JJKnx2GBJalRRFJ6x6t4dBg6EOXMMV5KSzwZLUqP59lsYOhQ2b4aFC6Fjx7gnkqSmYYMlqVFMnQqFhXDeebB4seFKUnaxwZKUUlu3wogRUFUVTmbv2jXuiSSp6dlgSUqZsrKw6iY3F1asMFxJyl42WJKO2Pbt4diF2bNh0iTo1SvuiSQpXjZYko7I4sVQUAA7dsAnnxiuJAlssCQdptpaGD0aJk6E55+Ha66JeyJJSh8GLEmH7NNPw6qb008PD7O3bh33RJKUXrxFKOmg1dfDk0+G24B33QVvv224kqS9scGSdFDWrAmrbo4+Gioq4Iwz4p5IktKXDZak/YoiePllKCmBa6+FuXMNV5J0IDZYkvZp40a45Rb47jtYsAA6dYp7IknKDDZYkvZq2rRw/EJxMZSXG64k6VDYYEnazY8/wp13huesZs4MtwYlSYfGBkvSLnPmhFU3LVtCZaXhSpIOlw2WJLZvh/vvD43VxIlw8cVxTyRJmc0GS8py5eVQWAg1NWHVjeFKko6cDZaUpWpr4ZFHwhEM48ZB//5xTyRJyWHAkrLQqlVh1
 
U1eXlh1k5sb90SSlCzeIpSySH09PPUUlJbCiBHhmSvDlSSlng2WlCXWrg2rbqIIli6FM8+MeyJJSi4bLCnhoghefRW6dYO+fWHePMOVJDU2GywpwTZtgltvhfXrQ7A655y4J5Kk7GCDJSXUm2/CueeGg0OXLjVcSVJTssGSEuann2DkSFiyBN56C7p3j3siSco+NlhSgnzwQWitmjcPxy8YriQpHjZYUgL88guMGhVuC77yCvTuHfdEkpTdbLCkDFdRAUVFsHlzWHVjuJKk+NlgSRlq504YMwYmTIDnnoMBA+KeSJL0DwYsKQN9/nlYdXPqqVBZCaedFvdEkqTf8xahlEEaGuCZZ6BnTxg2DGbNMlxJUjqywZIyxLp1cNNN4dZgeTm0axf3RJKkfbHBktJcFMFrr0HXrnDZZbBggeFKktKdDZaUxr7/Hm67DdasCWdcdekS90SSpINhgyWlqRkzwqGh+fmwbJnhSpIyiQ2WlGZqauDuu+HDD2H6dLjggrgnkiQdKhssKY3Mmxdaq+OOC6tuDFeSlJlssKQ0sGMHPPAATJ0aVt306RP3RJKkI2GDJcVs+XIoLobq6rDqxnAlSZnPBkuKyc6d8PjjMH48jB0L110X90SSpFQxYEkx+OKLsOqmRQtYsQLy8uKeSJKUSt4ilJpQQ0NYzNyjBwwZAmVlhitJSiIbLKmJrF8fQtX27bB4MXToEPdEkqTGYoMlNbIogsmTw4PsF10UzrcyXElSstlgSY3ohx9g+HBYvRrefx8KCuKeSJLUFGywpEbyzjvh0NB27aCiwnAlSdnEBktKsZ9/hnvugblzw8GhF14Y90SSpKZmgyWl0MKFobU66ihYudJwJUnZygZLSoFff4UHH4TXX4eXXoIrr4x7IklSnAxY0hGqrAyHhubnh1U3rVrFPZEkKW7eIpQOU10dPPoo9O4No0bBtGmGK0lSYIMlHYbVq2HQIGjePCxrbtMm7okkSenEBks6BF
 
EUljOffz7ccAO8957hSpK0Jxss6SBt2AA33ww1NbBoEZx1VtwTSZLSlQ2WdABRFH47sKgIevY0XEmSDswGS9qPLVvg9tth1SooKwshS5KkA7HBkvZh1izo0iU8Y7V8ueFKknTwbLCkP9i2De69NyxnnjIFSkvjnkiSlGkS32ANHTqU1q1b06VLl72+vmDBAk4++WSKioooKipizJgxTTyh0slHH4VVN3V1YdWN4UqSdDgS32ANGTKEO++8k0GDBu3zmp49ezJz5swmnErp5rff4KGHYPJkmDAB+vWLeyJJUiZLfIPVo0cPWrRosd9roihqommUjlauhG7d4Msvw9eGK0nSkUp8wDoYS5YsoaCggCuuuILPPvss7nHUROrr4Ykn4JJL4L774I034JRT4p5KkpQEib9FeCDFxcV88803nHjiibz77rtcffXVrF69Ou6x1Mi++goGD4bjj4ePP4a2beOeSJKUJFkfsJo1a7br6z59+nDHHXewdetWWrZsudfrR48evevr0tJSSn0KOqNEEbz4IvzHf4Q/f/kLHGWPK0kpN3/+fObPnx/3GLHJibLgAaS1a9fSt29fPv300z1e27RpE61btwZg2bJlDBgwgLVr1+7178nJyfF5rQz27bcwdChs3gyTJkHHjnFPJEnZI9t+hia+wbr++uuZP38+W7ZsoW3btjz88MPU1taSk5PDsGHDmD59Oi+88ALHHnssJ5xwAlOnTo17ZDWCqVNh5Ei44w7493+HY4+NeyJJUpJlRYOVKtmWvpNg61YYMQKqqsIRDF27xj2RJGWnbPsZ6tMnSqyysrDqJjcXVqwwXEmSmk7ibxEq+2zfHo5dmD07PGvVq1fcE0mSso0NlhJl8WIoKIAdO+CTTwxXkqR42GApEWprYfRomDgRnn8errkm7okkSdnMgKWM9+mncOONcPrp4WH2v5+6IUlSbLxFqIxVXw9PPhluA951F7z9tuFKkpQebLCUkdasCat
 
ujj4aKirgjDPinkiSpP9jg6WMEkXw8stQUgLXXgtz5xquJEnpxwZLGWPjRrjlFvjuO1iwADp1insiSZL2zgZLGWHatHD8QnExlJcbriRJ6c0GS2ntxx/hzjvDc1YzZ4Zbg5IkpTsbLKWtOXPCqpuWLaGy0nAlScocNlhKO9u3w/33h8Zq4kS4+OK4J5Ik6dDYYCmtlJdDYSHU1IRVN4YrSVImssFSWqithUceCUcwjBsH/fvHPZEkSYfPgKXYrVoVVt3k5YVVN7m5cU8kSdKR8RahYlNfD089BaWlMGJEeObKcCVJSgIbLMVi7dqw6iaKYOlSOPPMuCeSJCl1bLDUpKIIXn0VunWDvn1h3jzDlSQpeWyw1GQ2bYJbb4X160OwOuecuCeSJKlx2GCpSbz5Jpx7bjg4dOlSw5UkKdlssNSofvoJRo6EJUvgrbege/e4J5IkqfHZYKnRfPBBaK2aNw/HLxiuJEnZwgZLKffLLzBqVLgt+Mor0Lt33BNJktS0bLCUUhUVUFQEmzeHVTeGK0lSNrLBUkrs3AljxsCECfDcczBgQNwTSZIUHwOWjtjnn4dVN6eeCpWVcNppcU8kSVK8vEWow9bQAM88Az17wrBhMGuW4UqSJLDB0mFatw5uuincGiwvh3bt4p5IkqT0YYOlQxJF8Npr0LUrXHYZLFhguJIk6Y9ssHTQvv8ebrsN1qwJZ1x16RL3RJIkpScbLB2UGTPCoaH5+bBsmeFKkqT9scHSftXUwN13w4cfwvTpcMEFcU8kSVL6s8HSPs2bF1qr444Lq24MV5IkHRwbLO1hxw544AGYOjWsuunTJ+6JJEnKLDZY2s3y5VBcDNXVYdWN4UqSpENngyUgnGf1+OMwfjyMHQvXXRf3RJIkZS4Dlvjii7DqpkULWLEC8vLinkiSpMzmLcIs1tAQFjP36AFDhkBZmeFKkqRUsMHKUuvXh1C1fTssXgwdOsQ9kSRJyWGDlWWiCCZPDg+y
 
X3RRON/KcCVJUmrZYGWRH36A4cNh9Wp4/30oKIh7IkmSkskGK0u88044NLRdO6ioMFxJktSYbLAS7uef4Z57YO7ccHDohRfGPZEkSclng5VgCxeG1uqoo2DlSsOVJElNxQYrgX79FR58EF5/HV56Ca68Mu6JJEnKLgashKmsDIeG5ueHVTetWsXOfgTxAAAHEklEQVQ9kSRJ2cdbhAlRVwePPgq9e8OoUTBtmuFKkqS42GAlwOrVMGgQNG8eljW3aRP3RJIkZTcbrAwWRWE58/nnww03wHvvGa4kSUoHNlgZasMGuPlmqKmBRYvgrLPinkiSJP2DDVaGiaLw24FFRdCzp+FKkqR0ZIOVQbZsgdtvh1WroKwshCxJkpR+bLAyxKxZ0KVLeMZq+XLDlSRJ6cwGK81t2wb33huWM0+ZAqWlcU8kSZIOxAYrjX30UVh1U1cXVt0YriRJygw2WGnot9/goYdg8mSYMAH69Yt7IkmSdCgMWGlm5cqw6qZ9+/D1KafEPZEkSTpU3iJME/X18MQTcMklcN998MYbhitJkjKVDVYa+OorGDwYjj8ePv4Y2raNeyJJknQkbLBiFEXhGavu3WHgQJgzx3AlSVIS2GDF5NtvYehQ2LwZFi6Ejh3jnkiSJKWKDVYMpk6FwkI47zxYvNhwJUlS0thgNaGtW2HECKiqCiezd+0a90SSJKkx2GA1kbKysOomNxdWrDBcSZKUZDZYjWz79nDswuzZMGkS9OoV90SSJKmx2WA1osWLoaAAduyATz4xXEmSlC1ssBpBbS2MHg0TJ8Lzz8M118Q9kSRJakoGrBT79NOw6ub008PD7K1bxz2RJElqat4iTJH6enjyyXAb8K674O23DVeSJGUrG6wUWLMmrLo5+mioqIAzzoh7IkmSFKfEN1hDhw6ldevWdOnSZZ/XjBw5kg4dOlBQUEBVVdVB/91RBC+/DCUlcO21MHeu4UqSJGVBwBoyZAjvvffePl9/9
 
913+frrr/nyyy958cUXGT58+EH9vRs3wpVXhl2CCxbAv/4rHJX4f5vJMn/+/LhHUIr5niaL76cyWeIjQY8ePWjRosU+X58xYwaDBg0CoKSkhJqaGjZt2rTfv3PatHD8QnExlJdDp04pHVlNxP/zTh7f02Tx/VQmy/pnsKqrq2nTps2u7/Py8qiurqb1Pp5Qv+GG8JzVzJnh1qAkSdIfZX3AOlQtWkBlJZx4YtyTSJKkdJUTRVEU9xCNbd26dfTt25dPPvlkj9eGDx/On//8ZwYOHAhAfn4+CxYs2GuDlZOT0+izSpKUVFkQOXbJigYriqJ9vqn9+vVj/PjxDBw4kPLyck4++eR93h7Mpv8wJEnS4Ut8wLr++uuZP38+W7ZsoW3btjz88MPU1taSk5PDsGHDuPzyy5k9ezbt27fnpJNOYuLEiXGPLEmSMlxW3CKUJElqSok/puFwlJWVkZ+fz5/+9Cf+9re/7fWawz2cVE3vQO/nggULOPnkkykqKqKoqIgxY8bEMKUOVmMeHqymd6D3089nZtmwYQO9evXi7LPPpnPnzjz77LN7vS4rPqORdlNfXx+1a9cuWrt2bVRbWxude+650eeff77bNbNnz44uv/zyKIqiqLy8PCopKYljVB2Eg3k/58+fH/Xt2zemCXWoPvzww6iysjLq3LnzXl/385lZDvR++vnMLBs3bowqKyujKIqi//3f/43+9Kc/Ze3PUBusP1i2bBkdOnTg9NNP59hjj+W6665jxowZu11zOIeTKh4H836Cv8CQSRrj8GDF50DvJ/j5zCS5ubkUFBQA0KxZMzp27Eh1dfVu12TLZ9SA9Qd/PHj0n//5n/f4j2Nfh5Mq/RzM+wmwZMkSCgoKuOKKK/jss8+ackSlmJ/P5PHzmZnWrl1LVVUVJX84lTtbPqOJ/y1C6UCKi4v55ptvOPHEE3n33Xe5+uqrWb16ddxjScLPZ6batm0b/fv3Z+zYsTRr1izucWJhg/
 
UHeXl5fPPNN7u+37BhA3l5eXtcs379+v1eo/RwMO9ns2bNOPHvR/P36dOHnTt3snXr1iadU6nj5zNZ/Hxmnrq6Ovr378+NN97IVVddtcfr2fIZNWD9Qbdu3fjqq69Yt24dtbW1/Pd//zf9+vXb7Zp+/foxadIkgAMeTqp4Hcz7+ft7/8uWLSOKIlq2bNnUo+oQRAc4PNjPZ2bZ3/vp5zPz3HzzzXTq1Im77rprr69ny2fUW4R/cPTRRzNu3DguvfRSGhoaGDp0KB07duTFF1/0cNIMdDDv5/Tp03nhhRc49thjOeGEE5g6dWrcY2s/PDw4WQ70fvr5zCyLFi1iypQpdO7cmcLCQnJycnjsscdYt25d1n1GPWhUkiQpxbxFKEmSlGIGLEmSpBQzYEmSJKWYAUuSJCnFDFiSJEkpZsCSJElKMQOWJElSihmwJEmSUsyAJUmSlGIGLEmSpBQzYEmSJKWYAUuSJCnFDFiSJEkpZsCSJElKMQOWJElSihmwJEmSUsyAJUmSlGIGLEmSpBQzYEmSJKWYAUuSJCnFDFiSJEkpZsCSJElKMQOWJElSihmwJEmSUsyAJUmSlGIGLEmSpBQzYEmSJKXY/wfkKCsZlpS9sAAAAABJRU5ErkJggg\u003d\u003d
 style\u003d\u0027width\u003dauto;height:auto\u0027\u003e\u003cdiv\u003e\n"
-          }
-        ]
-      },
-      "dateCreated": "Nov 2, 2016 2:53:47 PM",
-      "status": "READY",
-      "errorMessage": "",
-      "progressUpdateIntervalMs": 500
-    },
-    {
-      "text": "%md\nNotice how an explicit call to `show()` is not necessary. 
This is accomplished via a post-execute hook which tells Zeppelin to plot all 
currently open matplotlib figures after executing the rest of the 
paragraph.\n### Plotting multiple figures\nWe can easily plot multiple figures 
at once too:",
-      "dateUpdated": "Nov 2, 2016 2:53:47 PM",
-      "config": {
-        "colWidth": 12.0,
-        "editorMode": "ace/mode/markdown",
-        "editorHide": true,
-        "enabled": true,
-        "results": [
-          {
-            "graph": {
-              "mode": "table",
-              "height": 300.0,
-              "optionOpen": false,
-              "keys": [],
-              "values": [],
-              "groups": [],
-              "scatter": {}
-            }
-          }
-        ]
-      },
-      "settings": {
-        "params": {},
-        "forms": {}
-      },
-      "apps": [],
-      "jobName": "paragraph_1478123627958_-1475087605",
-      "id": "20160617-002131_1552178409",
-      "results": {
-        "code": "SUCCESS",
-        "msg": [
-          {
-            "type": "HTML",
-            "data": "\u003cp\u003eNotice how an explicit call to 
\u003ccode\u003eshow()\u003c/code\u003e is not necessary. This is accomplished 
via a post-execute hook which tells Zeppelin to plot all currently open 
matplotlib figures after executing the rest of the 
paragraph.\u003c/p\u003e\n\u003ch3\u003ePlotting multiple 
figures\u003c/h3\u003e\n\u003cp\u003eWe can easily plot multiple figures at 
once too:\u003c/p\u003e\n"
-          }
-        ]
-      },
-      "dateCreated": "Nov 2, 2016 2:53:47 PM",
-      "status": "READY",
-      "errorMessage": "",
-      "progressUpdateIntervalMs": 500
-    },
-    {
-      "text": "%python\n# Figure 1\nplt.plot([1, 2, 3])\n\n# Figure 
2\nplt.figure()\nplt.plot([3, 2, 1])",
-      "dateUpdated": "Nov 2, 2016 2:53:47 PM",
-      "config": {
-        "colWidth": 12.0,
-        "editorMode": "ace/mode/python",
-        "enabled": true,
-        "results": [
-          {
-            "graph": {
-              "mode": "table",
-              "height": 300.0,
-              "optionOpen": false,
-              "keys": [],
-              "values": [],
-              "groups": [],
-              "scatter": {}
-            }
-          }
-        ]
-      },
-      "settings": {
-        "params": {},
-        "forms": {}
-      },
-      "apps": [],
-      "jobName": "paragraph_1478123627959_-1475472354",
-      "id": "20161101-193533_2096366908",
-      "results": {
-        "code": "SUCCESS",
-        "msg": [
-          {
-            "type": "HTML",
-            "data": "\u003cdiv 
style\u003d\u0027width:auto;height:auto\u0027\u003e\u003cimg 
src\u003d
 
N//vOfKSsro1OnTrv+eV5eHuvXr9/1/YYNG8jLy9vjf//HW4uSJOngRVEU9whNJvEN1ubNm6mpqQFgx44dzJkzh/z8/N2u6devH5MmTQKgvLyck08+mdatW+/174uiyD8J+fPXv/419hn843vqH9/PpP5ZsiSiQ4eIG26I+PHH7AlW/5D4Bmvjxo0MHjyYhoYGGhoaGDhwIJdffjkvvvgiOTk5DBs2jMsvv5zZs2fTvn17TjrpJCZOnBj32JIkZaTaWnjkEXj5ZRg3Dvr3j3uieCQ+YHXu3JkVK1bs8c9vu+223b4fN25cU40kSVIirVoFN94IeXlQVQW5uXFPFJ/E3yKU9qW0tDTuEZRivqfJ4vuZOerr4amnoLQURoyAmTOzO1wB5ERRlH03Rg9TTk4O/uuSJOn/rF0LgwdDFMFrr8GZZ+79umz7GWqDJUmSDlkUwauvQrdu0LcvzJu373CVjRL/DJYkSUqtTZvg1lth/foQrM45J+6J0o8NliRJOmhvvgnnngtdusDSpYarfbHBkiRJB/TTTzByJCxZAm+9Bd27xz1RerPBkiRJ+/XBB6G1at48HL9guDowGyxJkrRXv/wCo0aF24KvvAK9e8c9UeawwZIkSXuoqICiIti8GT75xHB1qGywJEnSLjt3wpgxMGECPPccDBgQ90SZyYAlSZIA+PzzsOrm1FOhshJOOy3uiTKXtwglScpyDQ3wzDPQsycMGwazZhmujpQNliRJWWzdOrjppnBrsLwc2rWLe6JksMGSJCkL/WN3YNeucNllsGCB4SqVbLAkScoy338Pt90Ga9aEM666dIl7ouSxwZIkKYvMmBEODc3Ph2XLDFeNxQZLkqQsUFMDd98NH34I06fDBRfEPVGy2WBJkpRw8+aF1uq448KqG8NV47PBkiQpoXbsgAcegKlTw6qbPn3inih72GBJkpRAy5dDcTFUV4dVN4arpmWDJUlSguzcCY8/DuPHw9ixcN11cU+
 
UnQxYkiQlxBdfhFU3LVrAihWQlxf3RNnLW4SSJGW4hoawmLlHDxgyBMrKDFdxs8GSJCmDrV8fQtX27bB4MXToEPdEAhssSZIyUhTB5MnhQfaLLgrnWxmu0ocNliRJGeaHH2D4cFi9Gt5/HwoK4p5If2SDJUlSBnnnnXBoaLt2UFFhuEpXNliSJGWAn3+Ge+6BuXPDwaEXXhj3RNofGyxJktLcwoWhtTrqKFi50nCVCWywJElKU7/+Cg8+CK+/Di+9BFdeGfdEOlgGLEmS0lBlZTg0ND8/rLpp1SruiXQovEUoSVIaqauDRx+F3r1h1CiYNs1wlYlssCRJShOrV8OgQdC8eVjW3KZN3BPpcNlgSZIUsygKy5nPPx9uuAHee89wlelssCRJitGGDXDzzVBTA4sWwVlnxT2RUsEGS5KkGERR+O3AoiLo2dNwlTQ2WJIkNbEtW+D222HVKigrCyFLyWKDJUlSE5o1C7p0Cc9YLV9uuEoqGyxJkprAtm1w771hOfOUKVBaGvdEakw2WJIkNbKPPgqrburqwqobw1Xy2WBJktRIfvsNHnoIJk+GCROgX7+4J1JTMWBJktQIVq4Mq27atw9fn3JK3BOpKXmLUJKkFKqvhyeegEsugfvugzfeMFxlIxssSZJS5KuvYPBgOP54+PhjaNs27okUFxssSZKOUBSFZ6y6d4eBA2HOHMNVtrPBkiTpCHz7LQwdCps3w8KF0LFj3BMpHdhgSZJ0mKZOhcJCOO88WLzYcKX/Y4MlSdIh2roVRoyAqqpwMnvXrnFPpHRjgyVJ0iEoKwurbnJzYcUKw5X2zgZLkqSDsH17OHZh9myYNAl69Yp7IqUzGyxJkg5g8WIoKIAdO+CTTwxXOjAbLEmS9qG2FkaPhokT4fnn4Zpr4p5ImcKAJUnSXnz6aVh1c/rp4WH21q3jnkiZxFuEkiT9Tn09PPlkuA14113w9tuGKx06GyxJkv5uzZqw6uboo6GiAs44
 
I+6JlKlssCRJWS+K4OWXoaQErr0W5s41XOnI2GBJkrLaxo1wyy3w3XewYAF06hT3REoCGyxJUtaaNi0cv1BcDOXlhiuljg2WJCnr/Pgj3HlneM5q5sxwa1BKJRssSVJWmTMnrLpp2RIqKw1Xahw2WJKkrLB9O9x/f2isJk6Eiy+OeyIlmQ2WJCnxysuhsBBqasKqG8OVGpsNliQpsWpr4ZFHwhEM48ZB//5xT6RsYcCSJCXSqlVh1U1eXlh1k5sb90TKJt4ilCQlSn09PPUUlJbCiBHhmSvDlZqaDZYkKTHWrg2rbqIIli6FM8+MeyJlKxssSVLGiyJ49VXo1g369oV58wxXipcNliQpo23aBLfeCuvXh2B1zjlxTyTZYEmSMtibb8K554aDQ5cuNVwpfdhgSZIyzk8/wciRsGQJvPUWdO8e90TS7mywJEkZ5YMPQmvVvHk4fsFwpXSU+IC1YcMGevXqxdlnn03nzp159tln97hmwYIFnHzyyRQVFVFUVMSYMWNimFSStD+//AJ33QU33QQvvQTjx8NJJ8U9lbR3ib9FeMwxx/D0009TUFDAtm3bKC4u5tJLLyU/P3+363r27MnMmTNjmlKStD8VFeHQ0OLisOqmRYu4J5L2L/ENVm5uLgUFBQA0a9aMjh07Ul1dvcd1URQ19WiSpAPYuRP++le48kr4f/8PpkwxXCkzJD5g/d7atWupqqqipKRkj9eWLFlCQUEBV1xxBZ999lkM00mSfu/zz8PzVRUVUFkJAwbEPZF08LImYG3bto3+/fszduxYmjVrtttrxcXFfPPNN1RVVfGXv/yFq6++OqYpJUkNDfDMM9CzJwwbBrNmwWmnxT2VdGgS/wwWQF1dHf379+fGG2/kqquu2uP13weuPn36cMcdd7B161Zatmy5x7WjR4/e9XVpaSmlpaWNMbIkZaV168JD7Dt3Qnk5tGsX90Q6XPPnz2f+/PlxjxGbnCgLHj4aNGgQrVq14
 
umnn97r65s2baJ169YALFu2jAEDBrB27do9rsvJyfFZLUlqBFEE//Vf8G//BvfdF/4cfXTcUymVsu1naOIbrEWLFjFlyhQ6d+5MYWEhOTk5PPbYY6xbt46cnByGDRvG9OnTeeGFFzj22GM54YQTmDp1atxjS1LW+P57uO02WLMmnHHVpUvcE0lHLisarFTJtvQtSY1txgwYPjzcFhw9Go47Lu6J1Fiy7Wdo4hssSVL6qamBu++GDz+E6dPhggvinkhKraz5LUJJUnqYNy+sujnuuLDqxnClJLLBkiQ1iR074IEHYOpUeOUV6NMn7omkxmODJUlqdMuXhzU31dVh1Y3hSklngyVJajQ7d8Ljj4fFzGPHwnXXxT2R1DQMWJKkRvHFF2FBc4sWsGIF5OXFPZHUdLxFKElKqYYGeO456NEDhgyBsjLDlbKPDZYkKWXWrw+havt2WLwYOnSIeyIpHjZYkqQjFkUweXJ4kP2ii8L5VoYrZTMbLEnSEfnhh3Aa++rV8P77UFAQ90RS/GywJEmH7Z13wqGh7dpBRYXhSvoHGyxJ0iH7+We45x6YOzccHHrhhXFPJKUXGyxJ0iFZuDC0VkcdBStXGq6kvbHBkiQdlF9/hQcfhNdfh5degiuvjHsiKX0ZsCRJB1RZGQ4Nzc8Pq25atYp7Iim9eYtQkrRPdXXw6KPQuzeMGgXTphmupINhgyVJ2qvVq2HQIGjePCxrbtMm7omkzGGDJUnaTRSF5cznnw833ADvvWe4kg6VDZYkaZcNG+Dmm6GmBhYtgrPOinsiKTPZYEmSiKLw24FFRdCzp+FKOlI2WJKU5bZsgdtvh1WroKwshCxJR8YGS5Ky2KxZ0KVLeMZq+XLDlZQqNliSlIW2bYN77w3LmadMgdLSuCeSksUGS5KyzEcfhVU3dXVh1Y3hSko9GyxJyhK//QYPPQSTJ8OECdCvX9wTScllwJKkLLByZVh10759+PqUU+KeSEo2bxFKUo
 
LV18MTT8All8B998EbbxiupKZggyVJCfXVVzB4MBx/PHz8MbRtG/dEUvawwZKkhImi8IxV9+4wcCDMmWO4kpqaDZYkJci338LQobB5MyxcCB07xj2RlJ1ssCQpIaZOhcJCOO88WLzYcCXFyQZLkjLc1q0wYgRUVYWT2bt2jXsiSTZYkpTBysrCqpvcXFixwnAlpQsbLEnKQNu3h2MXZs+GSZOgV6+4J5L0ezZYkpRhFi+GggLYsQM++cRwJaUjGyxJyhC1tTB6NEycCM8/D9dcE/dEkvbFgCVJGeDTT8Oqm9NPDw+zt24d90SS9sdbhJKUxurr4cknw23Au+6Ct982XEmZwAZLktLUmjVh1c3RR0NFBZxxRtwTSTpYNliSlGaiCF5+GUpK4NprYe5cw5WUaWywJCmNbNwIt9wC330HCxZAp05xTyTpcNhgSVKamDYtHL9QXAzl5YYrKZPZYElSzH78Ee68MzxnNXNmuDUoKbPZYElSjObMCatuWraEykrDlZQUNliSFIPt2+H++0NjNXEiXHxx3BNJSiUbLElqYuXlUFgINTVh1Y3hSkoeGyxJaiK1tfDII+EIhnHjoH//uCeS1FgMWJLUBFatCqtu8vLCqpvc3LgnktSYvEUoSY2ovh6eegpKS2HEiPDMleFKSj4bLElqJGvXhlU3UQRLl8KZZ8Y9kaSmYoMlSSkWRfDqq9CtG/TtC/PmGa6kbGODJUkptGkT3HorrF8fgtU558Q9kaQ42GBJUoq8+Sace244OHTpUsOVlM1ssCTpCP30E4wcCUuWwFtvQffucU8kKW42WJJ0BD74ILRWzZuH4xcMV5LABkuSDssvv8CoUeG24CuvQO/ecU8kKZ3YYEnSIaqogKIi2Lw5rLoxXEn6IxssSTpIO3fCmDEwYQI89xwMGBD3RJLSlQFLkg7C55+HVTenngqVlXDaaXFPJCmdeYtQkvajoQGeeQZ69oRhw2DWLMOVpAOzwZKkfVi
 
3Dm66KdwaLC+Hdu3inkhSprDBkqQ/iCJ47TXo2hUuuwwWLDBcSTo0NliS9Dvffw+33QZr1oQzrrp0iXsiSZnIBkuS/m7GjHBoaH4+LFtmuJJ0+GywJGW9mhq4+2748EOYPh0uuCDuiSRlOhssSVlt3rzQWh13XFh1Y7iSlAo2WJKy0o4d8MADMHVqWHXTp0/cE0lKEhssSVln+XIoLobq6rDqxnAlKdVssCRljZ074fHHYfx4GDsWrrsu7okkJZUBS1JW+OKLsOqmRQtYsQLy8uKeSFKSeYtQUqI1NITFzD16wJAhUFZmuJLU+BIfsDZs2ECvXr04++yz6dy5M88+++xerxs5ciQdOnSgoKCAqqqqJp5SUmNYvx4uvRRefx0WL4bbb4ecnLinkpQNEh+wjjnmGJ5++mlWrVrFkiVLGD9+PP/zP/+z2zXvvvsuX3/9NV9++SUvvvgiw4cPj2laSakQRTB5cniQ/aKLwvlWHTrEPZWkbJL4Z7Byc3PJzc0FoFmzZnTs2JHq6mry8/N3XTNjxgwGDRoEQElJCTU1NWzatInWrVvHMrOkw/fDDzB8OKxeDe+/DwUFcU8kKRslvsH6vbVr11JVVUVJSclu/7y6upo2bdrs+j4vL4/q6uqmHk/SEXrnnXBoaLt2UFFhuJIUn8Q3WP+wbds2+vfvz9ixY2nWrFnc40hKoZ9/hnvugblzw8GhF14Y90SSsl1WBKy6ujr69+/PjTfeyFVXXbXH63l5eaxfv37X9xs2bCBvH79mNHr06F1fl5aWUlpamupxJR2ChQth8GC4+GJYuRKaN497IkkA8+fPZ/78+XGPEZucKIqiuIdobIMGDaJVq1Y8/fTTe3199uzZjB8/nlmzZlFeXs7dd99NeXn5Htfl5OSQBf+6pIzw66/w4IPhNwRfegmuvDLuiSTtT7b9DE18g7Vo0SKmTJlC586dKSwsJCcnh8cee4x169aRk5PDsGHDuPzyy5k9ezbt
 
27fnpJNOYuLEiXGPLWk/KivDoaH5+WHVTatWcU8kSbvLigYrVbItfUvppq4O/va3sObmP/8Trr/ec62kTJFtP0MT32BJSobVq2HQoPCM1fLl8Ltf/JWktJNVxzRIyjxRFJYzn38+3HADvPee4UpS+rPBkpS2NmyAm2+GmhpYtAjOOivuiSTp4NhgSUo7URR+O7CoCHr2NFxJyjw2WJLSypYtYSnzqlVQVhZCliRlGhssSWlj1izo0iU8Y7V8ueFKUuaywZIUu23b4N57w3LmKVPABQmSMp0NlqRYffRRWNBcVxdW3RiuJCWBDZakWPz2Gzz0EEyeDBMmQL9+cU8kSaljwJLU5FauDKtu2rcPX59yStwTSVJqeYtQUpOpr4cnnoBLLoH77oM33jBcSUomGyxJTeKrr2DwYDj+ePj4Y2jbNu6JJKnx2GBJalRRFJ6x6t4dBg6EOXMMV5KSzwZLUqP59lsYOhQ2b4aFC6Fjx7gnkqSmYYMlqVFMnQqFhXDeebB4seFKUnaxwZKUUlu3wogRUFUVTmbv2jXuiSSp6dlgSUqZsrKw6iY3F1asMFxJyl42WJKO2Pbt4diF2bNh0iTo1SvuiSQpXjZYko7I4sVQUAA7dsAnnxiuJAlssCQdptpaGD0aJk6E55+Ha66JeyJJSh8GLEmH7NNPw6qb008PD7O3bh33RJKUXrxFKOmg1dfDk0+G24B33QVvv224kqS9scGSdFDWrAmrbo4+Gioq4Iwz4p5IktKXDZak/YoiePllKCmBa6+FuXMNV5J0IDZYkvZp40a45Rb47jtYsAA6dYp7IknKDDZYkvZq2rRw/EJxMZSXG64k6VDYYEnazY8/wp13huesZs4MtwYlSYfGBkvSLnPmhFU3LVtCZaXhSpIOlw2WJLZvh/vvD43VxIlw8cVxTyRJmc0GS8py5eVQWAg1NWHVjeFKko6cDZaUpWpr4ZFHwhEM48ZB//5xTyRJyWHAkrLQqlVh1
 
U1eXlh1k5sb90SSlCzeIpSySH09PPUUlJbCiBHhmSvDlSSlng2WlCXWrg2rbqIIli6FM8+MeyJJSi4bLCnhoghefRW6dYO+fWHePMOVJDU2GywpwTZtgltvhfXrQ7A655y4J5Kk7GCDJSXUm2/CueeGg0OXLjVcSVJTssGSEuann2DkSFiyBN56C7p3j3siSco+NlhSgnzwQWitmjcPxy8YriQpHjZYUgL88guMGhVuC77yCvTuHfdEkpTdbLCkDFdRAUVFsHlzWHVjuJKk+NlgSRlq504YMwYmTIDnnoMBA+KeSJL0DwYsKQN9/nlYdXPqqVBZCaedFvdEkqTf8xahlEEaGuCZZ6BnTxg2DGbNMlxJUjqywZIyxLp1cNNN4dZgeTm0axf3RJKkfbHBktJcFMFrr0HXrnDZZbBggeFKktKdDZaUxr7/Hm67DdasCWdcdekS90SSpINhgyWlqRkzwqGh+fmwbJnhSpIyiQ2WlGZqauDuu+HDD2H6dLjggrgnkiQdKhssKY3Mmxdaq+OOC6tuDFeSlJlssKQ0sGMHPPAATJ0aVt306RP3RJKkI2GDJcVs+XIoLobq6rDqxnAlSZnPBkuKyc6d8PjjMH48jB0L110X90SSpFQxYEkx+OKLsOqmRQtYsQLy8uKeSJKUSt4ilJpQQ0NYzNyjBwwZAmVlhitJSiIbLKmJrF8fQtX27bB4MXToEPdEkqTGYoMlNbIogsmTw4PsF10UzrcyXElSstlgSY3ohx9g+HBYvRrefx8KCuKeSJLUFGywpEbyzjvh0NB27aCiwnAlSdnEBktKsZ9/hnvugblzw8GhF14Y90SSpKZmgyWl0MKFobU66ihYudJwJUnZygZLSoFff4UHH4TXX4eXXoIrr4x7IklSnAxY0hGqrAyHhubnh1U3rVrFPZEkKW7eIpQOU10dPPoo9O4No0bBtGmGK0lSYIMlHYbVq2HQIGjePCxrbtMm7okkSenEBks6BF
 
EUljOffz7ccAO8957hSpK0Jxss6SBt2AA33ww1NbBoEZx1VtwTSZLSlQ2WdABRFH47sKgIevY0XEmSDswGS9qPLVvg9tth1SooKwshS5KkA7HBkvZh1izo0iU8Y7V8ueFKknTwbLCkP9i2De69NyxnnjIFSkvjnkiSlGkS32ANHTqU1q1b06VLl72+vmDBAk4++WSKioooKipizJgxTTyh0slHH4VVN3V1YdWN4UqSdDgS32ANGTKEO++8k0GDBu3zmp49ezJz5swmnErp5rff4KGHYPJkmDAB+vWLeyJJUiZLfIPVo0cPWrRosd9roihqommUjlauhG7d4Msvw9eGK0nSkUp8wDoYS5YsoaCggCuuuILPPvss7nHUROrr4Ykn4JJL4L774I034JRT4p5KkpQEib9FeCDFxcV88803nHjiibz77rtcffXVrF69Ou6x1Mi++goGD4bjj4ePP4a2beOeSJKUJFkfsJo1a7br6z59+nDHHXewdetWWrZsudfrR48evevr0tJSSn0KOqNEEbz4IvzHf4Q/f/kLHGWPK0kpN3/+fObPnx/3GLHJibLgAaS1a9fSt29fPv300z1e27RpE61btwZg2bJlDBgwgLVr1+7178nJyfF5rQz27bcwdChs3gyTJkHHjnFPJEnZI9t+hia+wbr++uuZP38+W7ZsoW3btjz88MPU1taSk5PDsGHDmD59Oi+88ALHHnssJ5xwAlOnTo17ZDWCqVNh5Ei44w7493+HY4+NeyJJUpJlRYOVKtmWvpNg61YYMQKqqsIRDF27xj2RJGWnbPsZ6tMnSqyysrDqJjcXVqwwXEmSmk7ibxEq+2zfHo5dmD07PGvVq1fcE0mSso0NlhJl8WIoKIAdO+CTTwxXkqR42GApEWprYfRomDgRnn8errkm7okkSdnMgKWM9+mncOONcPrp4WH2v5+6IUlSbLxFqIxVXw9PPhluA951F7z9tuFKkpQebLCUkdasCat
 
ujj4aKirgjDPinkiSpP9jg6WMEkXw8stQUgLXXgtz5xquJEnpxwZLGWPjRrjlFvjuO1iwADp1insiSZL2zgZLGWHatHD8QnExlJcbriRJ6c0GS2ntxx/hzjvDc1YzZ4Zbg5IkpTsbLKWtOXPCqpuWLaGy0nAlScocNlhKO9u3w/33h8Zq4kS4+OK4J5Ik6dDYYCmtlJdDYSHU1IRVN4YrSVImssFSWqithUceCUcwjBsH/fvHPZEkSYfPgKXYrVoVVt3k5YVVN7m5cU8kSdKR8RahYlNfD089BaWlMGJEeObKcCVJSgIbLMVi7dqw6iaKYOlSOPPMuCeSJCl1bLDUpKIIXn0VunWDvn1h3jzDlSQpeWyw1GQ2bYJbb4X160OwOuecuCeSJKlx2GCpSbz5Jpx7bjg4dOlSw5UkKdlssNSofvoJRo6EJUvgrbege/e4J5IkqfHZYKnRfPBBaK2aNw/HLxiuJEnZwgZLKffLLzBqVLgt+Mor0Lt33BNJktS0bLCUUhUVUFQEmzeHVTeGK0lSNrLBUkrs3AljxsCECfDcczBgQNwTSZIUHwOWjtjnn4dVN6eeCpWVcNppcU8kSVK8vEWow9bQAM88Az17wrBhMGuW4UqSJLDB0mFatw5uuincGiwvh3bt4p5IkqT0YYOlQxJF8Npr0LUrXHYZLFhguJIk6Y9ssHTQvv8ebrsN1qwJZ1x16RL3RJIkpScbLB2UGTPCoaH5+bBsmeFKkqT9scHSftXUwN13w4cfwvTpcMEFcU8kSVL6s8HSPs2bF1qr444Lq24MV5IkHRwbLO1hxw544AGYOjWsuunTJ+6JJEnKLDZY2s3y5VBcDNXVYdWN4UqSpENngyUgnGf1+OMwfjyMHQvXXRf3RJIkZS4Dlvjii7DqpkULWLEC8vLinkiSpMzmLcIs1tAQFjP36AFDhkBZmeFKkqRUsMHKUuvXh1C1fTssXgwdOsQ9kSRJyWGDlWWiCCZPDg+y
 
X3RRON/KcCVJUmrZYGWRH36A4cNh9Wp4/30oKIh7IkmSkskGK0u88044NLRdO6ioMFxJktSYbLAS7uef4Z57YO7ccHDohRfGPZEkSclng5VgCxeG1uqoo2DlSsOVJElNxQYrgX79FR58EF5/HV56Ca68Mu6JJEnKLgashKmsDIeG5ueHVTetWsXOfgTxAAAHEklEQVQ9kSRJ2cdbhAlRVwePPgq9e8OoUTBtmuFKkqS42GAlwOrVMGgQNG8eljW3aRP3RJIkZTcbrAwWRWE58/nnww03wHvvGa4kSUoHNlgZasMGuPlmqKmBRYvgrLPinkiSJP2DDVaGiaLw24FFRdCzp+FKkqR0ZIOVQbZsgdtvh1WroKwshCxJkpR+bLAyxKxZ0KVLeMZq+XLDlSRJ6cwGK81t2wb33huWM0+ZAqWlcU8kSZIOxAYrjX30UVh1U1cXVt0YriRJygw2WGnot9/goYdg8mSYMAH69Yt7IkmSdCgMWGlm5cqw6qZ9+/D1KafEPZEkSTpU3iJME/X18MQTcMklcN998MYbhitJkjKVDVYa+OorGDwYjj8ePv4Y2raNeyJJknQkbLBiFEXhGavu3WHgQJgzx3AlSVIS2GDF5NtvYehQ2LwZFi6Ejh3jnkiSJKWKDVYMpk6FwkI47zxYvNhwJUlS0thgNaGtW2HECKiqCiezd+0a90SSJKkx2GA1kbKysOomNxdWrDBcSZKUZDZYjWz79nDswuzZMGkS9OoV90SSJKmx2WA1osWLoaAAduyATz4xXEmSlC1ssBpBbS2MHg0TJ8Lzz8M118Q9kSRJakoGrBT79NOw6ub008PD7K1bxz2RJElqat4iTJH6enjyyXAb8K674O23DVeSJGUrG6wUWLMmrLo5+mioqIAzzoh7IkmSFKfEN1hDhw6ldevWdOnSZZ/XjBw5kg4dOlBQUEBVVdVB/91RBC+/DCUlcO21MHeu4UqSJGVBwBoyZAjvvffePl9/9
 
913+frrr/nyyy958cUXGT58+EH9vRs3wpVXhl2CCxbAv/4rHJX4f5vJMn/+/LhHUIr5niaL76cyWeIjQY8ePWjRosU+X58xYwaDBg0CoKSkhJqaGjZt2rTfv3PatHD8QnExlJdDp04pHVlNxP/zTh7f02Tx/VQmy/pnsKqrq2nTps2u7/Py8qiurqb1Pp5Qv+GG8JzVzJnh1qAkSdIfZX3AOlQtWkBlJZx4YtyTSJKkdJUTRVEU9xCNbd26dfTt25dPPvlkj9eGDx/On//8ZwYOHAhAfn4+CxYs2GuDlZOT0+izSpKUVFkQOXbJigYriqJ9vqn9+vVj/PjxDBw4kPLyck4++eR93h7Mpv8wJEnS4Ut8wLr++uuZP38+W7ZsoW3btjz88MPU1taSk5PDsGHDuPzyy5k9ezbt27fnpJNOYuLEiXGPLEmSMlxW3CKUJElqSok/puFwlJWVkZ+fz5/+9Cf+9re/7fWawz2cVE3vQO/nggULOPnkkykqKqKoqIgxY8bEMKUOVmMeHqymd6D3089nZtmwYQO9evXi7LPPpnPnzjz77LN7vS4rPqORdlNfXx+1a9cuWrt2bVRbWxude+650eeff77bNbNnz44uv/zyKIqiqLy8PCopKYljVB2Eg3k/58+fH/Xt2zemCXWoPvzww6iysjLq3LnzXl/385lZDvR++vnMLBs3bowqKyujKIqi//3f/43+9Kc/Ze3PUBusP1i2bBkdOnTg9NNP59hjj+W6665jxowZu11zOIeTKh4H836Cv8CQSRrj8GDF50DvJ/j5zCS5ubkUFBQA0KxZMzp27Eh1dfVu12TLZ9SA9Qd/PHj0n//5n/f4j2Nfh5Mq/RzM+wmwZMkSCgoKuOKKK/jss8+ackSlmJ/P5PHzmZnWrl1LVVUVJX84lTtbPqOJ/y1C6UCKi4v55ptvOPHEE3n33Xe5+uqrWb16ddxjScLPZ6batm0b/fv3Z+zYsTRr1izucWJhg/
 
UHeXl5fPPNN7u+37BhA3l5eXtcs379+v1eo/RwMO9ns2bNOPHvR/P36dOHnTt3snXr1iadU6nj5zNZ/Hxmnrq6Ovr378+NN97IVVddtcfr2fIZNWD9Qbdu3fjqq69Yt24dtbW1/Pd//zf9+vXb7Zp+/foxadIkgAMeTqp4Hcz7+ft7/8uWLSOKIlq2bNnUo+oQRAc4PNjPZ2bZ3/vp5zPz3HzzzXTq1Im77rprr69ny2fUW4R/cPTRRzNu3DguvfRSGhoaGDp0KB07duTFF1/0cNIMdDDv5/Tp03nhhRc49thjOeGEE5g6dWrcY2s/PDw4WQ70fvr5zCyLFi1iypQpdO7cmcLCQnJycnjsscdYt25d1n1GPWhUkiQpxbxFKEmSlGIGLEmSpBQzYEmSJKWYAUuSJCnFDFiSJEkpZsCSJElKMQOWJElSihmwJEmSUsyAJUmSlGIGLEmSpBQzYEmSJKWYAUuSJCnFDFiSJEkpZsCSJElKMQOWJElSihmwJEmSUsyAJUmSlGIGLEmSpBQzYEmSJKWYAUuSJCnFDFiSJEkpZsCSJElKMQOWJElSihmwJEmSUsyAJUmSlGIGLEmSpBQzYEmSJKXY/wfkKCsZlpS9sAAAAABJRU5ErkJggg\u003d\u003d
 
style\u003d\u0027width\u003dauto;height:auto\u0027\u003e\u003cdiv\u003e\n\u003cdiv
 style\u003d\u0027width:auto;height:auto\u0027\u003e\u003cimg 
src\u003d
 
IhBVhc1LF25iNYoCuOMQ2wwXaGCqHsEm5YitkqUYUEt0mbEOC5mJBPk0v3jt4sCBfrQp+d3zvN7vxLCpWfKd3I4fr/5PM/z+8a0t7e3CwAAAL75he0CAAAAgoYBCwAAwGcMWAAAAD5jwAIAAPAZAxYAAIDPGLAAAAB8xoAFAADgMwYsAAAAnzFgAQAA+IwBCwAAwGcMWAAAAD5jwAIAAPAZAxYAAIDPGLAAAAB8xoAFAADgMwYsAAAAnzFgAQAA+IwBCwAAwGcMWAAAAD5jwAIAAPAZAxYAAIDPGLAAAAB8xoAFAADgMwYsAAAAnzFgAQAA+IwBCwAAwGcMWAAAAD5jwAIAAPAZAxYAAIDPGLAAAAB8xoAFAADgMwYsAAAAnzFgAQAA+IwBCwAAwGeBH7COHz+u3NxcZWZmKjU1VUuXLu3wdQsXLlRKSooyMjLU3Nwc5ioBAECQXGG7gO7Wu3dv/dd//Zf69u2rU6dOafLkyZo2bZomTJhw5jVvvfWWPv/8cx04cEC7du3S/Pnz1dDQYLFqAAAQzQKfYElS3759JZk06+TJk4qJiTnr6zU1NSorK5Mk5ebm6vvvv9eRI0fCXicAAAgGJwas06dPKzMzU0OGDNFtt92mnJycs77e1tam5OTkM79PSkpSW1tbuMsEAAAB4cSA9Ytf/EJNTU1qbW3Vrl279Nlnn9kuCQAABFjg78H6uX79+mnKlCnaunWrfvnLX57586SkJB0+fPjM71tbW5WUlHTe//7cS4sAAKDz2tvbbZcQNoFPsL799lt9//33kqS//e1v2r59u8aOHXvWa2bOnKkNGzZIkhoaGhQfH6+EhIQOv9+vf92u669vV0NDu9rb+RHNP5YsWWK9Bn7wnvKD99OVH64JfIL15z//WeXl5Tp9+rROnz6t0tJSTZ8+XVVVVYqJiVFFRYWmT5+u2tpajR49WrGxsXr55Zcv+P1+9zupulqaOVOqqJAefVTq1SuM/4cAAE
 
DEC/yAlZqaqo8++ui8P/+nf/qns36/Zs2aTn/PkhJp8mTp3nuliROlDRuk8eO7XCoAAAiIwF8i7C7XXiu9+aZ0331SQYFUWSmdPm27KnhRUFBguwT4jPc0WHg/Ec1i2l28MHqZYmJiOryO/MUXUnm51KOH9Mor0nXXhb00AAAi2oV6aFCRYPlg5EgpFJKKiqScHGndOsmhf0MAAOAcJFgedGb63rtXuuceafhw6YUXpAs8jAgAgFNIsNAlqalSY6N0ww1Serr0xhu2KwIAAOFGguWB1+m7vl4qK5MmTZJWrZKuvrobiwMAIIKRYME3EydKzc1SbKyUlia9+67tigAAQDiQYHnQlel72zZp3jxzhtaTT0p9+vhcHAAAEYwEC92isFD65BPpm2+krCxp927bFQEAgO5CguWBX9P3xo3SwoXmkNJHHpF69vShOAAAIhgJFrpdaanU1GSeNpw4Udq3z3ZFAADATwxYliQmSlu2mH2G+fnSypWs2gEAICi4ROhBd8WbBw+aVTu9e5tVO8OG+f5XAABgFZcIEXajR0s7dpgb4bOzpfXrWbUDAEA0I8HyIBzT98cfm1U7o0ZJVVXS4MHd+tcBABAWJFiwKj3dHOEwZoz5dU2N7YoAAIBXJFgehHv6/uADc2/WzTdLzzwj9esXtr8aAABfkWAhYuTlmUuGvXqZVTuhkO2KAABAZ5BgeWBz+q6tNUc6lJZKy5ZJV15ppQwAAC4LCRYi0vTpZtVOa6t50nDPHtsVAQCAC2HAiiIDB5o1O4sXS9OmSY8/Lp08absqAABwLi4RehBJ8WZbmzR3rnT0qLRhg3nqEACASBVJPTQcSLCiVFKStHWrecpw8mRp9WpW7QAAEClIsDyI1On7wAGprEyKi5PWrZOSk21XBADA2SK1h3YXEqwASEmRdu6UpkwxN8C/+iqrdgAAsIkEy4NomL6bmsyqnbFjpeeflwYNsl0RAADR0UP9RIIVMJmZ0ocfSiN
 
GmMNJN2+2XREAAO4hwfIg2qbvHTuk2bOlW26RKiulq66yXREAwFXR1kO7igQrwPLzzaodySyO3rHDbj0AALiCBMuDaJ6+N2+WKiqku+82B5SyagcAEE7R3EMvBwmWI2bMMKt2vvxSuvFGczM8AADoHgxYDhk0SHr9denhh6XCQrM0mlU7AAD4j0uEHgQp3jx8WJozRzp2zKzaSUmxXREAIMiC1EM7gwTLUcnJ0ttvm3uyJk2S1q7lcFIAAPxCguVBUKfv/fvNqp34eLNqJynJdkUAgKAJag+9EBIsaMwYqa5OysszB5W+9hppFgAAXUGC5YEL0/eePWbVTmqquWw4cKDtigAAQeBCD/05EiycJTvbDFlDh5pVO7W1tisCACD6kGB54Nr0HQqZVTuFhdKKFVJcnO2KAADRyrUeSoKFCyooMIeTnjhhVu3U1dmuCACA6ECC5YFr0/fP1dRI8+dL5eXS0qVS7962KwIARBPXeigJFjqluNgsjt6/X8rJ+WmJNAAAOB8DFjpt8GBp0ybpoYekW2+VnnpKOnXKdlUAAEQeLhF64Fq8eTGHDplVO8ePm1U7o0bZrggAEMlc66EkWLgsw4dL77wjzZol3XSTVFXF4aQAAPw/EiwPXJu+O2vfPnM46TXXSC+9JCUm2q4IABBpXOuhJFjosnHjpPp6KTfXrNrZuNF2RQAA2EWC5YFr0/fl2L3bpFlZWdKaNdKAAbYrAgBEAtd6KAkWfJWTIzU1mScO09KkbdtsVwQAQPiRYHng2vTdVe+9Z540LCqSli+XYmNtVwQAsMW1HkqChW4zdapZtXPsmJSRYe7TAgDABSRYHrg2fftp0yZpwQJp3jxpyRKpVy/bFQEAwsm1HkqChbC46y6zXmfvXmnCBPMzAABBxYCFsElIMEujFy0ylw+XL2fVDgAgmLhE6IFr8WZ3ammRZs82A9b69dLIkbYrAgB0J9d6KAkWrLjuOvOU4Z13mgNKX3yRVTsA
 
gOAgwfLAtek7XD791BxOmphoBq0hQ2xXBADwm2s9lAQL1o0fLzU0mNPfMzKk6mrbFQEA0DUkWB64Nn3bsGuXSbMmTJBWr5b697ddEQDAD671UBIsRJTcXKm52QxW6enS9u22KwIAwDsSLA9cm75t277dHExaXCw9/bTUt6/tigAAl8u1HkqChYh1223mcNKjR6XMTHP5EACAaECC5YFr03ckqa6W7r9fqqiQHn2UVTsAEG1c66EkWIgKJSXm3qymJmniRHO0AwAAkYoBC1Hj2mulN9+U7rtPKiiQKiul06dtVwUAwPm4ROiBa/FmJPviC6m8XOrRQ3rlFXMyPAAgcrnWQ0mwEJVGjpRCIamoSMrJkdatY9UOACBykGB54Nr0HS327jWHkw4fLr3wgpSQYLsiAMC5XOuhJFiIeqmpUmOjdMMN5nDSN96wXREAwHUkWB64Nn1Ho/p6qaxMmjRJWrVKuvpq2xUBACT3eigJFgJl4kRznENsrJSWJr37ru2KAAAuCvyA1draqqlTp2r8+PFKTU3VqlWrznvN+++/r/j4eGVlZSkrK0tPPPGEhUrhl9hYae1acz9Webn04IPS3/5muyoAgEsCf4nw66+/1tdff62MjAz98MMPys7OVk1NjcaOHXvmNe+//75WrFih//zP/7zo93It3gyC776THnjAHFC6YYN54hAAEH6u9dDAJ1hDhgxRRkaGJCkuLk7jxo1TW1vbea9z6U13yYAB0h/+ID32mDRjhvn5xAnbVQEAgi7wA9bPtbS0qLm5Wbm5ued9rb6+XhkZGSoqKtJnn31moTp0p9JSk2I1Npr7tPbts10RACDInBmwfvjhB5WUlGjlypWKi4s762vZ2dn66quv1NzcrAceeEB33HGHpSrRnRITpS1bpHvvlfLzpZUrWbUDAOgegb8HS5JOnjypGTNmaNq0aVq0aNElXz9ixAjt2bNHAwYMOOvPY2JitGTJkjO/LygoUEFBgd/lI
 
gwOHjQ3wPfubVbtDBtmuyIACJZQKKRQKHTm90uXLnXqdhwnBqyysjINGjRIlZWVHX79yJEjSvi/478bGxs1a9YstbS0nPc6127QC7pTp6R///effpSVSTExtqsCgGByrYcGfsCqq6tTfn6+UlNTFRMTo5iYGC1btkyHDh1STEyMKioq9Oyzz+q5555Tz5491adPH/3Hf/xHh/dpufaPwxUff2xW7YwaJVVVSYMH264IAILHtR4a+AHLT67943DJ8ePSkiXS+vXS889LxcW2KwKAYHGthzJgeeDaPw4XffCBuTfr5pulZ56R+vWzXREABINrPdSZpwiBzsjLM5cMe/Uyq3Z+dn8mAACdRoLlgWvTt+tqa82RDqWl0rJl0pVX2q4IAKKXaz2UBAu4gOnTpU8+kVpbpexsac8e2xUBAKIFAxZwEQMHShs3SosXS9OmSY8/Lp08absqAECk4xKhB67FmzhbW5s0d6509KhZHD1mjO2KACB6uNZDSbCATkpKkrZuNU8ZTp4srV7Nqh0AQMdIsDxwbfrGhR04YE5+j4uT1q2TkpNtVwQAkc21HkqCBVyGlBRp505pyhRzA/yrr0oO/XcDAHAJJFgeuDZ9o3OamsyqnbFjzSnwgwbZrggAIo9rPZQEC+iizEzpww+lESPM4aSbN9uuCABgGwmWB65N3/Buxw5p9mzpllukykrpqqtsVwQAkcG1HkqCBfgoP9+s2pGk9HQzcAEA3EOC5YFr0ze6ZvNmqaJCuvtuc0Apq3YAuMy1HkqCBXSTGTPMqp0vv5RuvNHcDA8AcAMDFtCNBg2SXn9devhhqbDQLI1m1Q4ABB+XCD1wLd6Evw4flubMkY4dM6t2UlJsVwQA4eNaDyXBAsIkOVl6+21zT9akSdLatRxOCgBBRYLlgWvTN7rP/v1m1U58vFm1k5RkuyIA6F6u9VASLMCCMWOkujopL88cVPraa6RZABAkJFgeuDZ9Izz27DGrdlJTzW
 
XDgQNtVwQA/nOth5JgAZZlZ5sha+hQs2qnttZ2RQCAriLB8sC16RvhFwqZVTuFhdKKFVJcnO2KAMAfrvVQEiwgghQUmMNJT5wwq3bq6mxXBAC4HCRYHrg2fcOumhpp/nypvFxaulTq3dt2RQBw+VzroSRYQIQqLjaLo/fvl3JyfloiDQCIfAxYQAQbPFjatEl66CHp1lulp56STp2yXRUA4FK4ROiBa/EmIsuhQ2bVzvHjZtXOqFG2KwKAznOth5JgAVFi+HDpnXekWbOkm26Sqqo4nBQAIhUJlgeuTd+IXPv2mcNJr7lGeuklKTHRdkUAcHGu9VASLCAKjRsn1ddLublm1c7GjbYrAgD8HAmWB65N34gOu3ebNCsrS1qzRhowwHZFAHA+13ooCRYQ5XJypKYm88RhWpq0bZvtigAAJFgeuDZ9I/q895550rCoSFq+XIqNtV0RABiu9VASLCBApk41q3aOHZMyMsx9WgCA8CPB8sC16RvRbdMmacECad48ackSqVcv2xUBcJlrPZQECwiou+4y63X27pUmTDA/AwDCgwELCLCEBLM0etEic/lw+XJW7QBAOHCJ0APX4k0ES0uLNHu2GbDWr5dGjrRdEQCXuNZDSbAAR1x3nXnK8M47zQGlL77Iqh0A6C4kWB64Nn0juD791BxOmphoBq0hQ2xXBCDoXOuhJFiAg8aPlxoazOnvGRlSdbXtigAgWEiwPHBt+oYbdu0yadaECdLq1VL//rYrAhBErvVQEizAcbm5UnOzGazS06Xt221XBADRjwTLA9emb7hn+3ZzMGlxsfT001LfvrYrAhAUrvVQEiwAZ9x2mzmc9OhRKTPTXD4EAHhHguWBa9M33FZdLd1/v1RRIT36KKt2AHSNaz2UBAtAh0pKzL1ZTU3SxInmaAcAQOcwYAG4oGuvld58U7rvPqmgQKqslE6ftl0VAEQ+LhF64Fq8CfzcF19I5eVSjx7SK6+Yk+EBoLNc66E
 
kWAA6ZeRIKRSSioqknBxp3TpW7QDAhZBgeeDa9A1cyN695nDS4cOlF16QEhJsVwQg0rnWQ0mwAHiWmio1Nko33GAOJ33jDdsVAUBkIcHywLXpG+iM+nqprEyaNElatUq6+mrbFQGIRK71UBIsAF0ycaI5ziE2VkpLk95913ZFAGAfCZYHrk3fgFfbtplVOyUl0pNPSn362K4IQKRwrYeSYAHwTWGh9Mkn0jffSFlZ0u7dtisCADtIsDxwbfoGumLjRmnhQnNI6SOPSD172q4IgE2u9VASLADdorTUrNlpbDT3ae3bZ7siAAgfBiwA3SYxUdqyRbr3Xik/X1q5klU7ANzAJUIPXIs3AT8dPGhW7fTubVbtDBtmuyIA4eRaDyXBAhAWo0dLO3aYG+Gzs6X161m1AyC4SLA8cG36BrrLxx+bVTujRklVVdLgwbYrAtDdXOuhJFgAwi493RzhMGaM+XVNje2KAMBfJFgeuDZ9A+HwwQfm3qybb5aeeUbq1892RQC6g2s9lAQLgFV5eeaSYa9eZtVOKGS7IgDoOhIsD1ybvoFwq601RzqUlkrLlklXXmm7IgB+ca2HkmABiBjTp5tVO62t5knDPXtsVwQAl4cBC0BEGTjQrNlZvFiaNk16/HHp5EnbVQGAN1wi9MC1eBOwra1NmjtXOnpU2rDBPHUIIDq51kNJsABErKQkaetW85Th5MnS6tWs2gEQHQI/YLW2tmrq1KkaP368UlNTtWrVqg5ft3DhQqWkpCgjI0PNzc1hrhLAhcTESAsWSPX10h/+YE6CP3zYdlUAcHGBH7CuuOIKVVZW6tNPP1V9fb2effZZ/elPfzrrNW+99ZY+//xzHThwQFVVVZo/f76lagFcSEqKtHOnNGWKuQH+1VdZtQMgcgV+wBoyZIgyMjIkSXFxcRo3bpza2trOek1NTY3KysokSbm5ufr+++915MiRsNcK4OKuuEL67W+lbdukp56S/v7vpW+/tV0V
 
AJwv8APWz7W0tKi5uVm5ubln/XlbW5uSk5PP/D4pKem8IQxA5MjMlD78UBoxwhxOunmz7YoA4GzODFg//PCDSkpKtHLlSsXFxdkuB0AXXXmltHy59Mc/SgsXSv/4j9Jf/2q7KgAwrrBdQDicPHlSJSUluueee1RcXHze15OSknT4Z3fNtra2KikpqcPv9dhjj535dUFBgQoKCvwuF4AH+flm1c4//7NZHP3KK+bPANgVCoUUcnj3lRPnYJWVlWnQoEGqrKzs8Ou1tbV69tlntWXLFjU0NOjBBx9UQ0PDea9z7QwPINps3ixVVEh3320OKGXVDhA5XOuhgR+w6urqlJ+fr9TUVMXExCgmJkbLli3ToUOHFBMTo4qKCknSAw88oK1btyo2NlYvv/yysrKyzvterv3jAKLRt99K8+dLf/qT9Lvfmfu1ANjnWg8N/IDlJ9f+cQDRqr1d+v3vpd/8RnrwQelf/sU8gQjAHtd6KAOWB6794wCi3eHD0pw50rFjZtVOSortigB3udZDnXmKEIB7kpOlt98292RNmiStXcvhpADCgwTLA9embyBI9u+Xysqk+Hhp3Tqz5xBA+LjWQ0mwADhhzBiprk7KyzM3vr/2GmkWgO5DguWBa9M3EFR79kj33COlpprLhgMH2q4ICD7XeigJFgDnZGebIWvoULNqp7bWdkUAgoYEywPXpm/ABaGQNHu2VFgorVghsUkL6B6u9VASLABOKyiQPvlEOnHCrNqpq7NdEYAgIMHywLXpG3BNTY05Bb68XFq6VOrd23ZFQHC41kNJsADg/xQXm8XR+/dLOTnm1wBwORiwAOBnBg+WNm2SHnpIuvVW6amnpFOnbFcFINpwidAD1+JNwHWHDplVO8ePm1U7o0bZrgiIXq71UBIsALiA4cOld96RZs2SbrpJqqricFIAnUOC5YFr0zeAn+zbZw4nveYa6aWXpMRE2xUB0cW1HkqCBQCdMG6cVF8v5eaaVTsbN
 
9quCEAkI8HywLXpG0DHdu82aVZWlrRmjTRggO2KgMjnWg8lwQIAj3JypKYm88RhWpq0bZvtigBEGhIsD1ybvgFc2nvvmScNi4qk5cul2FjbFQGRybUeSoIFAF0wdapZtXPsmJSRYe7TAgASLA9cm74BeLNpk7RggTRvnrRkidSrl+2KgMjhWg8lwQIAn9x1l1mvs3evNGGC+RmAmxiwAMBHCQlmafSiReby4fLlrNoBXMQlQg9cizcBdE1LizR7thmw1q+XRo60XRFgj2s9lAQLALrJddeZpwzvvNMcUPrii6zaAVxBguWBa9M3AP98+qk5nDQx0QxaQ4bYrggIL9d6KAkWAITB+PFSQ4M5/T0jQ6qutl0RgO5EguWBa9M3gO6xa5dJsyZMkFavlvr3t10R0P1c66EkWAAQZrm5UnOzGazS06Xt221XBMBvJFgeuDZ9A+h+27ebg0mLi6Wnn5b69rVdEdA9XOuhJFgAYNFtt5nDSY8elTIzzeVDANGPBMsD16ZvAOFVXS3df79UUSE9+iirdhAsrvVQEiwAiBAlJeberKYmaeJEc7QDgOjEgAUAEeTaa6U335Tuu08qKJAqK6XTp21XBcArLhF64Fq8CcCuL76QysulHj2kV14xJ8MD0cq1HkqCBQARauRIKRSSioqknBxp3TpW7QDRggTLA9embwCRY+9eczjp8OHSCy9ICQm2KwK8ca2HkmABQBRITZUaG6UbbjCHk77xhu2KAFwMCZYHrk3fACJTfb1UViZNmiStWiVdfbXtioBLc62HkmABQJSZONEc5xAbK6WlSe++a7siAOciwfLAtekbQOTbts2s2ikpkZ58UurTx3ZFQMdc66EkWAAQxQoLpU8+kb75RsrKknbvtl0RAIkEyxPXpm8A0WXjRmnhQnNI6SOPSD172q4I+IlrPZQECwACorTUrNlpbDT3ae3bZ7siwF0MWAAQIImJ0pYt0r33Svn50sqVrNoBbOASoQ
 
euxZsAotvBg2bVTu/eZtXOsGG2K4LLXOuhJFgAEFCjR0s7dpgb4bOzpfXrWbUDhAsJlgeuTd8AguPjj82qnVGjpKoqafBg2xXBNa71UBIsAHBAero5wmHMGPPrmhrbFQHBRoLlgWvTN4Bg+uADc2/WzTdLzzwj9etnuyK4wLUeSoIFAI7JyzOXDHv1Mqt2QiHbFQHBQ4LlgWvTN4Dgq601RzqUlkrLlklXXmm7IgSVaz2UBAsAHDZ9ulm109pqnjTcs8d2RUAwMGABgOMGDjRrdhYvlqZNkx5/XDp50nZVQHTjEqEHrsWbANzT1ibNnSsdPSpt2GCeOgT84FoPJcECAJyRlCRt3WqeMpw8WVq9mlU7wOUgwfLAtekbgNsOHJDKyqS4OGndOik52XZFiGau9VASLABAh1JSpJ07pSlTzA3wr77Kqh2gs0iwPHBt+gaA/9fUZFbtjB0rPf+8NGiQ7YoQbVzroSRYAIBLysyUPvxQGjHCHE66ebPtioDIRoLlgWvTNwB0ZMcOafZs6ZZbpMpK6aqrbFeEaOBaDyXBAgB4kp9vVu1IZnH0jh126wEiEQmWB65N3wBwKZs3SxUV0t13mwNKWbWDC3Gth5JgAQAu24wZZtXOl19KN95oboYHwIAFAOiiQYOk11+XHn5YKiw0S6NZtQPXcYnQA9fiTQDw6vBhac4c6dgxs2onJcV2RYgUrvVQEiwAgG+Sk6W33zb3ZE2aJK1dy+GkcBMJlgeuTd8A0BX795tVO/HxZtVOUpLtimCTaz2UBAsA0C3GjJHq6qS8PHNQ6WuvkWbBHSRYHrg2fQOAX/bsMat2UlPNZcOBA21XhHBzrYeSYAEAul12thmyhg41q3Zqa21XBHQvEiwPXJu+AaA7hEJm1U5hobRihRQXZ7sihINrPTTwCda8efOUkJCgtLS0Dr/+/vvvKz4+XllZWcrKytITTzwR5goBwC0FBeZw0hMnzKqdujrbFQH+C/yANWf
 
OHG3btu2ir8nPz9dHH32kjz76SIsXLw5TZQDgrn79zJOFlZVSSYk5pPT4cdtVAf4J/ICVl5en/v37X/Q1LkWWABBJiovN4uj9+6WcnJ+WSAPRLvADVmfU19crIyNDRUVF+uyzz2yXAwBOGTxY2rRJeugh6dZbpaeekk6dsl0V0DXOD1jZ2dn66quv1NzcrAceeEB33HGH7ZIAwDkxMVJ5ufThh+Yk+Px86fPPbVcFXL4rbBdgW9zPHl+ZNm2aFixYoO+++04DBgzo8PWPPfbYmV8XFBSooKCgmysEAHcMHy698460erV0003SE09IFRVmAEN0CYVCCoVCtsuwxoljGlpaWnT77bdr7969533tyJEjSkhIkCQ1NjZq1qxZamlp6fD7uPaIKQDYtG+fOZz0mmukl16SEhNtV4SucK2HBj7B+tWvfqVQKKS//OUvGjZsmJYuXaoff/xRMTExqqioUHV1tZ577jn17NlTffr00caNG22XDACQNG6cVF8v/du/mVU7q1ZJpaW2qwI6x4kEyy+uTd8AECl27zZpVlaWtGaNdIG7OBDBXOuhzt/kDgCIfDk5UlOTeeIwLU26xPGGgHUkWB64Nn0DQCR67z1pzhypqEhavlyKjbVdETrDtR5KggUAiCpTp5pVO8eOSRkZ5j4tINKQYHng2vQNAJFu0yZpwQJp3jxpyRKpVy/bFeFCXOuhJFgAgKh1111mvc7evdKECeZnIBIwYAEAolpCglRTIy1aZC4fLl/Oqh3YxyVCD1yLNwEg2rS0SLNnmwFr/Xpp5EjbFeH/udZDSbAAAIFx3XXmKcM775Ryc6UXX5Qc6umIICRYHrg2fQNANPv0U3M4aWKiGbSGDLFdkdtc66EkWACAQBo/Xmpz9yscAAALDUlEQVRoMKe/Z2RI1dW2K4JLSLA8cG36BoCg2LXLpFkTJkirV0v9+9uuyD2u9VASLABA4OXmSs3NZrBKT5e2b7ddEYKOBMsD16Zv
 
AAii7dvNwaTFxdLTT0t9+9quyA2u9VASLACAU267zRxOevSolJlpLh8CfiPB8sC16RsAgq66Wrr/fqmiQnr0UVbtdCfXeigJFgDAWSUl5t6spiZp4kRztAPgBwYsAIDTrr1WevNN6b77pIICqbJSOn3adlWIdlwi9MC1eBMAXPPFF1J5udSjh/TKK+ZkePjDtR5KggUAwP8ZOVIKhaSiIiknR1q3jlU7uDwkWB64Nn0DgMv27jWHkw4fLr3wgpSQYLui6OZaDyXBAgCgA6mpUmOjdMMN5nDSN96wXRGiCQmWB65N3wAAo75eKiuTJk2SVq2Srr7adkXRx7UeSoIFAMAlTJxojnOIjZXS0qR337VdESIdCZYHrk3fAIDzbdtmVu2UlEhPPin16WO7oujgWg8lwQIAwIPCQumTT6RvvpGysqTdu21XhEhEguWBa9M3AODiNm6UFi40h5Q+8ojUs6ftiiKXaz2UBAsAgMtUWmrW7DQ2mvu09u2zXREiBQMWAABdkJgobdki3XuvlJ8vrVzJqh1widAT1+JNAIA3Bw+aVTu9e5tVO8OG2a4ocrjWQ0mwAADwyejR0o4d5kb47Gxp/XpW7biKBMsD16ZvAMDl+/hjs2pn1CipqkoaPNh2RXa51kNJsAAA6Abp6eYIhzFjzK9ramxXhHAiwfLAtekbAOCPDz4w92bdfLP0zDNSv362Kwo/13ooCRYAAN0sL89cMuzVy6zaCYVsV4TuRoLlgWvTNwDAf7W15kiH0lJp2TLpyittVxQervVQEiwAAMJo+nSzaqe11TxpuGeP7YrQHRiwAAAIs4EDzZqdxYuladOkxx+XTp60XRX8xCVCD1yLNwEA3a+tTZo7Vzp6VNqwwTx1GESu9VASLAAALEpKkrZuNU8ZTp4srV7Nqp0gIMHywLXpGwAQXgcOSGVlUlyctG6dlJxsuyL/uNZDSbAAAIgQKSnSzp3SlCnmBvhXX2XVTrQiwfLAtekbA
 
GBPU5NZtTN2rPT889KgQbYr6hrXeigJFgAAESgzU/rwQ2nECHM46ebNtiuCFyRYHrg2fQMAIsOOHdLs2dItt0iVldJVV9muyDvXeigJFgAAES4/36zakczi6B077NaDSyPB8sC16RsAEHk2b5YqKqS77zYHlEbLqh3XeigJFgAAUWTGDLNq58svpRtvNDfDI/IwYAEAEGUGDZJef116+GGpsNAsjWbVTmThEqEHrsWbAIDId/iwNGeOdOyYWbWTkmK7oo651kNJsAAAiGLJydLbb5t7siZNktau5XDSSECC5YFr0zcAILrs329W7cTHm1U7SUm2K/qJaz2UBAsAgIAYM0aqq5Py8sxBpa+9RpplCwmWB65N3wCA6LVnj1m1k5pqLhsOHGi3Htd6KAkWAAABlJ1thqyhQ82qndpa2xW5hQTLA9embwBAMIRCZtVOYaG0YoUUFxf+GlzroSRYAAAEXEGBOZz0xAmzaqeuznZFwUeC5YFr0zcAIHhqaqT586XycmnpUql37/D8va71UBIsAAAcUlxsFkfv3y/l5Py0RBr+YsACAMAxgwdLmzZJDz0k3Xqr9NRT0qlTtqsKFi4ReuBavAkACL5Dh8yqnePHzaqdUaO65+9xrYeSYAEA4LDhw6V33pFmzZJuukmqquJwUj+QYHng2vQNAHDLvn3mcNJrrpFeeklKTPTve7vWQ0mwAACAJGncOKm+XsrNNat2Nm60XVH0IsHywLXpGwDgrt27TZqVlSWtWSMNGNC17+daDyXBAgAA58nJkZqazBOHaWnStm22K4ouJFgeuDZ9AwAgSe+9Z540LCqSli+XYmO9fw/XeigJFgAAuKipU82qnWPHpIwMc58WLo4EywPXpm8AAM61aZO0YIE0b560ZInUq1fn/neu9VASLAAA0Gl33WXW6+zdK02YYH7G+RiwAACAJwkJZmn0okXm8uHy5azaOReXCD1wLd4EAOBSWlqk2bPNgLV+vTRyZM
 
evc62HBj7BmjdvnhISEpSWlnbB1yxcuFApKSnKyMhQc3NzGKsDACC6XXedecrwzjvNAaUvvsiqHcmBAWvOnDnadpHDO9566y19/vnnOnDggKqqqjR//vwwVgebQqGQ7RLgM97TYOH9jB6/+IX0m99IoZC0dq10++3S11/brsquwA9YeXl56t+//wW/XlNTo7KyMklSbm6uvv/+ex05ciRc5cEi/uMdPLynwcL7GX3Gj5caGszp7xkZUnW17YrsCfyAdSltbW1KTk4+8/ukpCS1tbVZrAgAgOjVq5f0r/9qboL/7W+lX/9a+p//sV1V+Dk/YAEAAP/l5krNzVL//lJ6uu1qwu8K2wXYlpSUpMOHD5/5fWtrq5KSki74+piYmHCUhTBZunSp7RLgM97TYOH9RLRyYsBqb2+/4KOhM2fO1LPPPqvS0lI1NDQoPj5eCQkJF/w+AAAAlxL4AetXv/qVQqGQ/vKXv2jYsGFaunSpfvzxR8XExKiiokLTp09XbW2tRo8erdjYWL388su2SwYAAFGOg0YBAAB8xk3uHdi6davGjh2r66+/Xk8//XSHr+Fw0uhxqffz/fffV3x8vLKyspSVlaUnnnjCQpXoLA4PDpZLvZ98PqNLa2urpk6dqvHjxys1NVWrVq3q8HVOfEbbcZZTp061jxo1qr2lpaX9xx9/bE9PT2/ft2/fWa+pra1tnz59ent7e3t7Q0NDe25uro1S0QmdeT9DoVD77bffbqlCeLVz5872pqam9tTU1A6/zuczulzq/eTzGV3+/Oc/tzc1NbW3t7e3//Wvf22//vrrne2hJFjnaGxsVEpKioYPH66ePXvqH/7hH1RTU3PWazicNHp05v2UeIAhmnB4cLBc6v2U+HxGkyFDhigjI0OSFBcXp3Hjxp13tqQrn1EGrHOce/Do0KFDz/vHweGk0aMz76ck1dfXKyMjQ0VFRfrss8/CWSJ8xuczePh8RqeWlhY1NzcrNzf3rD9
 
35TMa+KcIgUvJzs7WV199pb59++qtt97SHXfcof/+7/+2XRYA8fmMVj/88INKSkq0cuVKxcXF2S7HChKscyQlJemrr7468/uODh71ejgp7OnM+xkXF6e+fftKkqZNm6YTJ07ou+++C2ud8A+fz2Dh8xl9Tp48qZKSEt1zzz0qLi4+7+uufEYZsM6Rk5OjgwcP6tChQ/rxxx/1xz/+UTNnzjzrNTNnztSGDRsk6ZKHk8KuzryfP7/239jYqPb2dg0YMCDcpcKD9kscHsznM7pc7P3k8xl95s6dq1/+8pdatGhRh1935TPKJcJz9OjRQ2vWrNHf/d3f6fTp05o3b57GjRunqqoqDieNQp15P6urq/Xcc8+pZ8+e6tOnjzZu3Gi7bFwEhwcHy6XeTz6f0aWurk6///3vlZqaqszMTMXExGjZsmU6dOiQc59RDhoFAADwGZcIAQAAfMaABQAA4DMGLAAAAJ8xYAEAAPiMAQsAAMBnDFgAAAA+Y8ACAADwGQMWAACAzxiwAAAAfMaABQAA4DMGLAAAAJ8xYAEAAPiMAQsAAMBnDFgAAAA+Y8ACAADwGQMWAACAzxiwAAAAfMaABQAA4DMGLAAAAJ8xYAEAAPiMAQsAAMBnDFgAAAA+Y8ACAADwGQMWAACAzxiwAAAAfMaABQAA4DMGLAAAAJ/9LwHBoCgraNiDAAAAAElFTkSuQmCC
 style\u003d\u0027width\u003dauto;height:auto\u0027\u003e\u003cdiv\u003e\n"
-          }
-        ]
-      },
-      "dateCreated": "Nov 2, 2016 2:53:47 PM",
-      "status": "READY",
-      "errorMessage": "",
-      "progressUpdateIntervalMs": 500
-    },
-    {
-      "text": "%md\n### Changing the default inline plotting behavior\nBoth 
the `python` and `pyspark` include a built-in function for changing some 
default inline plotting behavior. For example, we can change the default size 
of each figure in pixels to 400x300 in svg format using: ",
-      "dateUpdated": "Nov 2, 2016 2:53:47 PM",
-      "config": {
-        "tableHide": false,
-        "colWidth": 12.0,
-        "editorMode": "ace/mode/markdown",
-        "editorHide": true,
-        "enabled": true,
-        "results": [
-          {
-            "graph": {
-              "mode": "table",
-              "height": 300.0,
-              "optionOpen": false,
-              "keys": [],
-              "values": [],
-              "groups": [],
-              "scatter": {}
-            }
-          }
-        ]
-      },
-      "settings": {
-        "params": {},
-        "forms": {}
-      },
-      "apps": [],
-      "jobName": "paragraph_1478123627959_-1475472354",
-      "id": "20160614-174421_274483707",
-      "results": {
-        "code": "SUCCESS",
-        "msg": [
-          {
-            "type": "HTML",
-            "data": "\u003ch3\u003eChanging the default inline plotting 
behavior\u003c/h3\u003e\n\u003cp\u003eBoth the 
\u003ccode\u003epython\u003c/code\u003e and 
\u003ccode\u003epyspark\u003c/code\u003e include a built-in function for 
changing some default inline plotting behavior. For example, we can change the 
default size of each figure in pixels to 400x300 in svg format 
using:\u003c/p\u003e\n"
-          }
-        ]
-      },
-      "dateCreated": "Nov 2, 2016 2:53:47 PM",
-      "status": "READY",
-      "errorMessage": "",
-      "progressUpdateIntervalMs": 500
-    },
-    {
-      "text": "%python\nz.configure_mpl(width\u003d400, height\u003d300, 
fmt\u003d\u0027svg\u0027)\nplt.plot([1, 2, 3])",
-      "dateUpdated": "Nov 2, 2016 2:53:47 PM",
-      "config": {
-        "colWidth": 12.0,
-        "editorMode": "ace/mode/scala",
-        "enabled": true,
-        "results": [
-          {
-            "graph": {
-              "mode": "table",
-              "height": 300.0,
-              "optionOpen": false,
-              "keys": [],
-              "values": [],
-              "groups": [],
-              "scatter": {}
-            }
-          }
-        ]
-      },
-      "settings": {
-        "params": {
-          "f1": "defaultValue"
-        },
-        "forms": {}
-      },
-      "apps": [],
-      "jobName": "paragraph_1478123627959_-1475472354",
-      "id": "20160616-234947_579056637",
-      "results": {
-        "code": "SUCCESS",
-        "msg": [
-          {
-            "type": "HTML",
-            "data": "\u003cdiv 
style\u003d\u0027width:auto;height:auto\u0027\u003e\u003cimg 
src\u003d
 
3fvt16DaH2xT3jvs3U1/XrjlaudPTP/+zI73dvcPwfqyOQb7/9Vhs3btTo6KhGR0e1bt06rVixQmVlZfJ4PNq0aZNWrFih6upqPffcc3riiSd05MgRmyUDwIzo6JDeeEN6/XXp1CkpKsp2RQ9mNUBSUlL0hz/8YczPN2/efNf3n3zySbBKAoCgO3pU+rd/k/bvl9avt13N5LlmDgR2ZGVl2S4h5HDPAsN9G2twUCoulurrpbo66QfTvyHB4ziO+xttk+DxeBQm/ygAIkBXl5SXJz37rPRf/yXFxo69xu2fa9Yf4wWASFNdLb38spSfL504MX54hAJaWAAQJCMjUmmpdPiwdPq0tGSJ7YoeDgECAEHQ1ydt2CANDUnt7dIEqxFCCi0sAJhhra1SRoaUlibV1oZHeEiMQABgxjiOdPCgtH27dOiQlJtru6LpRYAAwAy4fVvavFk6f15qbJSSkmxXNP1oYQHANOvsNE9ZeTxSc3N4hodEgADAtKqslBYvlrZskY4dk74/8igs0cICgGkwPCxt22bWdVRVSfccbRSWCBAAeEi9vWYPq8ceM4/oPvWU7YqCgxYWADyEhgbp5z+XsrLMCvNICQ+JEQgABMRxpI8/lnbtMrvp5uTYrij4CBAAmKKBAamw0GyI2NIiJSbarsgOWlgAMAUXL5oJ8vh4076K1PCQCBAAmLSKCjPXUVIilZVJjz9uuyK7aGEBwAMMDUlbt5pJ8tpaKTXVdkXuQIAAwH34/dKaNdLcuVJbmxQXZ7si96CFBQATOHfOzHesXm1WmBMed2MEAgD3GB2Vdu+W9u2Tysul7GzbFbkTAQIAP3DjhrRxozkAqq1N8nptV+RetLAA4HsdHWZV+T/9k+TzER4PQoAAgMxq8mXLpJ07pb17pago2xW5Hy0sABFtcFAqLpbq66W6Oik52XZFoYMRCICI1dVlzu64edOcW054TA0BAiAiVVebUwPz880ZHrGxtisKPbSwAES
 
UkRGptFQ6fFg6fVpassR2RaGLAAEQMfr6pA0bzNYk7e1SQoLtikIbLSwAEaG1VcrIkNLSzH5WhMfDYwQCIKw5jnTwoLR9u3TokJSba7ui8EGAAAhbt29LmzdL589LjY1SUpLtisILLSwAYamz0zxl5fFIzc2Ex0wgQACEncpKs75jyxbp2DEpOtp2ReGJFhaAsDE8LG3bJp08KVVVma3YMXMIEABhobdXWr/eHDPb3i7NmWO7ovBHCwtAyGtoMLvoZmWZkQfhERyMQACELMeRPv5Y2rXL7Kabk2O7oshCgAAISQMDUmGh2RCxpUVKTLRdUeShhQUg5Fy8aCbI4+NN+4rwsIMAARBSKirMXEdJiVRWZibNYQctLAAhYWhI2rrVbMN+9qy0aJHtikCAAHA9v19as0aaO1dqa5Pi4mxXBIkWFgCXO3fOzHfk5poV5oSHezACAeBKo6PS7t3Svn1SebmUnW27ItyLAAHgOjduSBs3mgOg2tokr9d2RRgPLSwArtLRYVaVz58v+XyEh5sRIABc4+hRadkyaedOs8I8Ksp2RbgfWlgArBsclIqLpfp6qa5OSk62XREmgxEIAKu6uszZHf395txywiN0ECAArKmuNqcG5udLx49LsbG2K8JUWA0Qv9+v7OxsvfDCC0pJSdG+ffvGXFNXV6e4uDilp6crPT1dO3bssFApgOk0MiL96lfSpk3S6dPS+++bo2cRWqzOgTz66KPas2ePUlNTdevWLWVkZGj58uVasGDBXde98sor+uKLLyxVCWA69fVJGzaYrUna26WEBNsVIVBWRyDz5s1TamqqJCkmJkYLFy5UT0/PmOscxwl2aQBmQGurlJEhpaVJtbWER6hzzRxId3e3Ojo6lJmZOea1pqYmpaam6rXXXtOlS5csVAfgYTiOdOCA9Prr0t695gCoR3kGNOS54l/hrVu3lJeXp7179yomJuau1zIyMnT16lVFR0erpqZGubm5unz5sqVK
 
AUzV7dvS5s3ShQtSY6OUlGS7IkwX6wEyPDysvLw85efna/Xq1WNe/2Gg5OTk6J133tH169cVHx8/5toPP/zwzp+zsrKUlZU1EyUDmKTOTumNN6TUVKmpSYqOtl2Ru/l8Pvl8PttlTJrHsTzBUFBQoKeeekp79uwZ9/Vr164p4ftGaWtrq9auXavu7u4x13k8HuZKABeprDQjj1//2jxtxVNWU+f2zzWrI5DGxkaVl5crJSVFaWlp8ng8+uijj3TlyhV5PB5t2rRJp06d0oEDBzRr1izNnj1bJ06csFkygAcYHpa2bZNOnpSqqsxW7AhP1kcg08XtSQ1Egt5eaf16c8xsebk0Z47tikKb2z/XXPMUFoDQ1tBgdtHNyjIjD8Ij/FmfRAcQ2hzH7Jy7a5fZTTcnx3ZFCBYCBEDABgakwkKzIWJLi5SYaLsiBBMtLAABuXjRTJDHx5v2FeEReQgQAFNWUWHmOkpKpLIyM2mOyEMLC8CkDQ1JW7eabdjPnpUWLbJdEWwiQABMit8vrVkjzZ0rtbVJcXG2K4JttLAAPNC5c2a+IzfXrDAnPCAxAgFwH6Oj0u7d0r59ZmFgdrbtiuAmBAiAcd28KRUUmAOg2tokr9d2RXAbWlgAxujoMKvK58+XfD7CA+MjQADc5ehRadkyaccOs8I8Ksp2RXArWlgAJEmDg1JxsVRfL9XVScnJtiuC2zECAaCuLmnxYqm/35xbTnhgMggQIMJVV0svvyzl50vHj0uxsbYrQqighQVEqJERqbRUOnxYOn1aWrLEdkUINQQIEIH6+qQNG8zWJO3t0venRgNTQgsLiDCtrVJGhpSWJtXWEh4IHCMQIEI4jnTwoLR9u3TokNmWBHgYBAgQAW7floqKpPPnpcZGKSnJdkUIB7SwgDDX2WmespKkpibCA9OHAAHCWGWlWd+xZYt07JgUHW27IoQTWlhAGBoelj74QDpxQqqqMluxA9ONAAHCTG+vtH69OWa2v
 
V2aM8d2RQhXtLCAMNLQYHbRzcoyIw/CAzOJEQgQBhzH7Jy7e7d05IiUk2O7IkQCAgQIcQMDUmGh2RCxuVlKTLRdESIFLSwghF26ZCbI4+NN+4rwQDARIECIqqiQXn1VKimRysrMpDkQTLSwgBAzNCRt3Wq2YT97Vlq0yHZFiFQECBBC/H5p7VrpJz+R2tqkuDjbFSGS0cICQsS5c2a+Y/Vqs8Kc8IBtjEAAlxsdNY/n7t8v/eY30tKltisCDAIEcLGbN6WCAnMA1O9/L3m9tisC/h8tLMClOjrMqvL58yWfj/CA+xAggAsdPSotXy7t3GlWmEdF2a4IGIsWFuAig4NScbFUX29GHcnJtisCJsYIBHCJri5zdkd/vzm3nPCA2xEggAtUV5tTAwsKpOPHpdhY2xUBD0YLC7BoZEQqLZUOH5Y+/9yMQIBQQYAAlvT1SRs2mK1J2tulhATbFQFTQwsLsKC1VcrIkNLSpNpawgOhiREIEESOIx08KG3fLh06JOXm2q4ICBwBAgTJ7dtSUZF0/rzU2CglJdmuCHg4tLCAIOjsNE9ZeTxSUxPhgfBAgAAzrLLSPF21ZYtZYR4dbbsiYHrQwgJmyPCw9MEH0okTUlWV2YodCCcECDADenul9evNMbPt7dKcObYrAqYfLSxgmjU0mF10s7LMyIPwQLhiBAJME8cxO+fu3i0dOSLl5NiuCJhZBAgwDQYGpMJCsyFic7OUmGi7ImDmWW1h+f1+ZWdn64UXXlBKSor27ds37nXFxcVKSkpSamqqOjo6glwlcH+XLpkJ8vh4074iPBAprAbIo48+qj179ujixYtqamrSp59+qj//+c93XVNTU6Ovv/5anZ2dKisrU1FRkaVqgbEqKqRXX5VKSqSyMjNpDkQKqy2sefPmad68eZKkmJgYLVy4UD09PVqwYMGda86cOaOCggJJUmZmpvr7+3Xt2jUlsHkQLBoakrZuNduwnz0rLVpkuyIg+FzzFF
 
Z3d7c6OjqUmZl51897enr09NNP3/ne6/Wqp6cn2OUBd/j95gmrK1ektjbCA5HLFQFy69Yt5eXlae/evYqJibFdDjCh//kfM9+xerVZYR4XZ7siwB7rT2ENDw8rLy9P+fn5Wr169ZjXvV6vvvnmmzvf+/1+eb3ecX/Xhx9+eOfPWVlZysrKmu5yEaFGR83jufv3S+XlUna27YoQjnw+n3w+n+0yJs3jOI5js4CCggI99dRT2rNnz7ivV1dX69NPP1VVVZWam5v1/vvvq7m5ecx1Ho9Hlv9REKZu3jRHzfb1Sf/939IE//8CTDu3f65ZDZDGxka98sorSklJkcfjkcfj0UcffaQrV67I4/Fo06ZNkqR3331XX375pZ544gkdOXJE6enpY36X2280QlNHh5SXJ73+uvSf/ylFRdmuCJHE7Z9r1kcg08XtNxqh5+hR6d//3bSt1q2zXQ0ikds/16zPgQBuMzgoFRdL9fWSzyclJ9uuCHAnVzyFBbhFV5c5u6O/35xbTngAEyNAgO9VV5tTAwsKpOPHpdhY2xUB7kYLCxFvZEQqLZUOH5Y+/9yMQAA8GAGCiNbXJ23YYLYmaW+X2CEHmDxaWIhYra1SRoaUlibV1hIewFQxAkHEcRzp4EFp+3bp0CEpN9d2RUBoIkAQUW7floqKpPPnpcZGKSnJdkVA6KKFhYjR2WmesvJ4pKYmwgN4WAQIIkJlpXm6assWs8I8Otp2RUDoo4WFsDY8LH3wgXTihFRVZbZiBzA9CBCErd5eaf16c8xse7s0Z47tioDwQgsLYamhQfr5z83JgVVVhAcwExiBIKw4jvTxx+bwpyNHpJwc2xUB4YsAQdgYGJAKC82GiM3NUmKi7YqA8EYLC2Hh0iUzQR4fb9pXhAcw8wgQhLyKCunVV6WSEqmszEyaA5h5tLAQsoaGpK1bzTbsZ89KixbZrgiILAQIQpLfL61dK/3kJ1JbmxQXZ7siIPLQwkLIOXfOzHe
 
sXm1WmBMegB2MQBAyRkfN47n790u/+Y20dKntioDIRoAgJNy8aY6a7euTfv97yeu1XREAWlhwvY4Os6p8/nzJ5yM8ALcgQOBqR49Ky5dLO3eaFeZRUbYrAvB/aGHBlQYHpeJiqb7ejDqSk21XBOBejEDgOl1d5uyO/n5zbjnhAbgTAQJXqa42pwYWFEjHj0uxsbYrAjARWlhwhZERqbRUOnxY+vxzMwIB4G4ECKzr65M2bDBbk7S3SwkJtisCMBm0sGBVa6uUkSGlpUm1tYQHEEoYgcAKx5EOHpS2b5cOHZJyc21XBGCqCBAE3e3b0ubN0oULUmOjlJRkuyIAgaCFhaDq7DRPWT3yiNTURHgAoYwAQdBUVpqnq7ZsMSvMo6NtVwTgYdDCwowbHpa2bZNOnpSqqsxW7ABCHwGCGdXbK61fb46ZbW+X5syxXRGA6UILCzOmocHsopuVZUYehAcQXhiBYNo5jtk5d9cuM9eRk2O7IgAzgQDBtBoYkAoLzYaILS1SYqLtigDMFFpYmDYXL5oJ8vh4074iPIDwRoBgWlRUmLmOkhKprMxMmgMIb7Sw8FCGhqStW8027GfPSosW2a4IQLAQIAiY3y+tWSPNnSu1tUlxcbYrAhBMtLAQkHPnzHxHbq5ZYU54AJGHEQimZHRU2r1b2rdPKi+XsrNtVwTAFgIEk3bjhrRxozkAqq1N8nptVwTAJlpYmJSODrOqfP58yecjPAAQIJiEo0elZcuknTvNCvOoKNsVAXADWliY0OCgVFws1ddLdXVScrLtigC4CSMQjKury5zd0d9vzi0nPADciwDBGNXV5tTA/Hzp+HEpNtZ2RQDcyGqAvP3220pISNCLL7447ut1dXWKi4tTenq60tPTtWPHjiBXGFlGRqRf/UratEk6fVp6/33J47FdFQC3sjoH8tZbb+m9995TQUHBhNe88sor+uKLL4JYVWTq65M2bDBbk7S3SwkJtisC4HZWRyBLlizR
 
k08+ed9rHMcJUjWRq7VVysiQ0tKk2lrCA8DkuH4OpKmpSampqXrttdd06dIl2+WEFceRDhyQXn9d2rvXHAD1KM/lAZgkV39cZGRk6OrVq4qOjlZNTY1yc3N1+fJl22WFhdu3pc2bpQsXpMZGKSnJdkUAQo2rAyQmJubOn3NycvTOO+/o+vXrio+PH/f6Dz/88M6fs7KylJWVNcMVhqbOTumNN6TUVKmpSYqOtl0RAEny+Xzy+Xy2y5g0j2N5kqG7u1srV67UH//4xzGvXbt2TQnfN+RbW1u1du1adXd3j/t7PB4P8yWTUFlpRh6//rV52oqnrAD3cvvnmtURyJtvvimfz6fvvvtOzzzzjEpLSzU0NCSPx6NNmzbp1KlTOnDggGbNmqXZs2frxIkTNssNacPD0rZt0smTUlWV2YodAB6G9RHIdHF7UtvU2yutX2+OmS0vl+bMsV0RgMlw++ea65/CwsNpaDC76GZlmZEH4QFgurh6Eh2Bcxyzc+6uXWY33Zwc2xUBCDcESBgaGJAKC82GiC0tUmKi7YoAhCNaWGHm4kUzQR4fb9pXhAeAmUKAhJGKCjPXUVIilZWZSXMAmCm0sMLA0JC0davZhv3sWWnRItsVAYgEBEiI8/ulNWukuXOltjYpLs52RQAiBS2sEHbunJnvyM01K8wJDwDBxAgkBI2OSrt3S/v2mYWB2dm2KwIQiQiQEHPjhrRxozkAqq1N8nptVwQgUtHCCiEdHWZV+fz5ks9HeACwiwAJEUePSsuWSTt3mhXmUVG2KwIQ6WhhudzgoFRcLNXXS3V1UnKy7YoAwGAE4mJdXdLixVJ/vzm3nPAA4CYEiEtVV0svvyzl50vHj0uxsbYrAoC70cJymZERqbRUOnxYOn1aWrLEdkUAMD4CxEX6+qQNG8zWJO3t0ven+QKAK9HCconWVikjQ0pLk2prCQ8A7scIxDLHkQ4elLZvlw4dMtuSAEAoIEAs+utfpaIi6cIFq
 
bFRSkqyXREATB4tLEsuXzZPWXk8UlMT4QEg9BAgFlRWmqer3n1XOnZMio62XREATB0trCAaHpa2bZNOnpSqqsxW7AAQqgiQIOntldatk2bPNo/ozpljuyIAeDi0sIKgocHsort0qRl5EB4AwgEjkBnkOGbn3F27zG66OTm2KwKA6UOAzJCBAamw0GyI2NIiJSbarggAphctrBlw8aKZII+PN+0rwgNAOCJApllFhZSVJZWUSGVl0uOP264IAGYGLaxpMjQk/eu/SjU10tmz0qJFtisCgJlFgEwDv19as0aaO1dqa5Pi4mxXBAAzjxbWQzp3zsx35OaaFeaEB4BIwQgkQKOj5vHc/ful8nIpO9t2RQAQXARIAG7ckDZuNAdAtbVJXq/tigAg+GhhTVFHh1lVPn++5PMRHgAiFwEyBUeOSMuWSTt3mhXmUVG2KwIAe2hhTcLgoFRcLNXXS3V1UnKy7YoAwD5GIA/Q1SUtXiz195tzywkPADAIkPuorjanBubnS8ePS7GxtisCAPeghTWOkRGptFQ6fFg6fdqcHggAuBsBco++PunNN6V//MMc/JSQYLsiAHAnWlg/0NoqZWRI6elSbS3hAQD3wwhE5uCngwel7dulQ4fMtiQAgPuL+AD561+loiLpwgWpsVFKSrJdEQCEhohuYV2+bJ6y8nikpibCAwCmImIDpLLSPF317rvSsWNSdLTtigAgtERcC2t4WNq2TTp5UqqqMluxAwCmLqICpLdXWrdOmj3bPKI7Z47tigAgdEVMC6uhweyiu3SpGXkQHgDwcMJ+BOI4ZufcXbuko0elnBzbFQFAeAjrABkYkAoLzYaILS1SYqLtigAgfFhtYb399ttKSEjQiy++OOE1xcXFSkpKUmpqqjo6Oib9uy9eNBPk8fGmfUV4AMD0shogb731ln77299O+HpNTY2+/vprdXZ2qqysTEVFRZP6vRUVUlaWVFIilZVJjz8+TQWHIZ/PZ7uEkM
 
M9Cwz3LfxYDZAlS5boySefnPD1M2fOqKCgQJKUmZmp/v5+Xbt2bcLrh4ak996T/uM/pLNnpX/5l+muOPzwH/XUcc8Cw30LP66eA+np6dHTTz9953uv16uenh4lTLDL4auvSnPnSm1tUlxcsKoEgMgUVo/xrl5tVpgTHgAw8zyO4zg2C7hy5YpWrlypCxcujHmtqKhIS5cu1bp16yRJCxYsUF1d3bgjEI/HM+O1AkCwWf6Ivi/rLSzHcSa8QatWrdKnn36qdevWqbm5WXFxcRO2r9x8kwEgHFkNkDfffFM+n0/fffednnnmGZWWlmpoaEgej0ebNm3SihUrVF1dreeee05PPPGEjhw5YrNcAMAPWG9hAQBCU8hNon/55ZdasGCBnn/+ee3evXvcawJdfBiuHnTP6urqFBcXp/T0dKWnp2vHjh0WqnSXmVzkGs4edN94r43l9/uVnZ2tF154QSkpKdq3b9+417ny/eaEkJGREefZZ591uru7naGhIWfRokXOn/70p7uuqa6udlasWOE4juM0Nzc7mZmZNkp1jcncM5/P56xcudJShe5UX1/vfPXVV05KSsq4r/M+G9+D7hvvtbG+/fZb56uvvnIcx3EGBgac559/PmQ+10JqBNLa2qqkpCT97Gc/06xZs7R+/XqdOXPmrmumuvgw3E3mnkk8hHCv6V7kGikedN8k3mv3mjdvnlJTUyVJMTExWrhwoXp6eu66xq3vt5AKkHsXFv70pz8dc6MnWnwYqSZzzySpqalJqampeu2113Tp0qVglhiSeJ8FjvfaxLq7u9XR0aHMzMy7fu7W95v1x3hhX0ZGhq5evaro6GjV1NQoNzdXly9ftl0WwhDvtYndunVLeXl52rt3r2JiYmyXMykhNQLxer26evXqne/9fr+8Xu+Ya7755pv7XhNJJnPPYmJiFP39ofA5OTn6xz/+oevXrwe1zlDD+ywwvNfGNzw8rLy8POXn52v16tVjXnfr+y2
 
kAuSll17SX/7yF125ckVDQ0M6fvy4Vq1addc1q1at0meffSZJD1x8GAkmc89+2EttbW2V4ziKj48Pdqmu4zxgkSvvs/Hd777xXhtfYWGhkpOT9ctf/nLc1936fgupFtaPfvQjffLJJ1q+fLlGR0f19ttva+HChSorK2Px4QQmc89OnTqlAwcOaNasWZo9e7ZOnDhhu2zrWOQamAfdN95rYzU2Nqq8vFwpKSlKS0uTx+PRRx99pCtXrrj+/cZCQgBAQEKqhQUAcA8CBAAQEAIEABAQAgQAEBACBAAQEAIEABAQAgQAEBACBAAQEAIEABAQAgQAEBACBAAQEAIEABAQAgQAEBACBAAQEAIEABAQAgQAEBACBAAQkP8FIFQxVkgtI/8AAAAASUVORK5CYII\u003d
 style\u003d\u0027width\u003dauto;height:auto\u0027\u003e\u003cdiv\u003e\n"
-          }
-        ]
-      },
-      "dateCreated": "Nov 2, 2016 2:53:47 PM",
-      "status": "READY",
-      "errorMessage": "",
-      "progressUpdateIntervalMs": 500
-    },
-    {
-      "text": "%md\n### Iteratively updating a plot\n#### (a) Using multiple 
plots\nNow let\u0027s show an example where we update each element of the plot 
in a separate paragraph. However, you may have noticed that each matplotlib 
figure instance gets closed immediately after its shown. To fix this, we set 
the `close` property to `False` in our configuration:",
-      "dateUpdated": "Nov 2, 2016 2:53:47 PM",
-      "config": {
-        "colWidth": 12.0,
-        "editorMode": "ace/mode/markdown",
-        "editorHide": true,
-        "enabled": true,
-        "results": [
-          {
-            "graph": {
-              "mode": "table",
-              "height": 394.0,
-              "optionOpen": false,
-              "keys": [],
-              "values": [],
-              "groups": [],
-              "scatter": {}
-            }
-          }
-        ]
-      },
-      "settings": {
-        "params": {},
-        "forms": {}
-      },
-      "apps": [],
-      "jobName": "paragraph_1478123627960_-1477396098",
-      "id": "20160617-140439_1111727405",
-      "results": {
-        "code": "SUCCESS",
-        "msg": [
-          {
-            "type": "HTML",
-            "data": "\u003ch3\u003eIteratively updating a 
plot\u003c/h3\u003e\n\u003ch4\u003e(a) Using multiple 
plots\u003c/h4\u003e\n\u003cp\u003eNow let\u0027s show an example where we 
update each element of the plot in a separate paragraph. However, you may have 
noticed that each matplotlib figure instance gets closed immediately after its 
shown. To fix this, we set the \u003ccode\u003eclose\u003c/code\u003e property 
to \u003ccode\u003eFalse\u003c/code\u003e in our configuration:\u003c/p\u003e\n"
-          }
-        ]
-      },
-      "dateCreated": "Nov 2, 2016 2:53:47 PM",
-      "status": "READY",
-      "errorMessage": "",
-      "progressUpdateIntervalMs": 500
-    },
-    {
-      "title": "First line",
-      "text": "%python\nplt.close() # Added here to reset the first plot when 
rerunning the paragraph\nz.configure_mpl(width\u003d600, height\u003d400, 
fmt\u003d\u0027png\u0027, close\u003dFalse)\nplt.plot([1, 2, 3], 
label\u003dr\u0027$y\u003dx$\u0027)",
-      "dateUpdated": "Nov 2, 2016 2:53:47 PM",
-      "config": {
-        "colWidth": 12.0,
-        "title": true,
-        "enabled": true,
-        "results": [
-          {
-            "graph": {
-              "mode": "table",
-              "height": 389.0,
-              "optionOpen": false,
-              "keys": [],
-              "values": [],
-              "groups": [],
-              "scatter": {}
-            }
-          }
-        ]
-      },
-      "settings": {
-        "params": {},
-        "forms": {}
-      },
-      "apps": [],
-      "jobName": "paragraph_1478123627960_-1477396098",
-      "id": "20161101-195657_1336292109",
-      "results": {
-        "code": "SUCCESS",
-        "msg": [
-          {
-            "type": "HTML",
-            "data": "\u003cdiv 
style\u003d\u0027width:auto;height:auto\u0027\u003e\u003cimg 
src\u003d
 
N//vOfKSsro1OnTrv+eV5eHuvXr9/1/YYNG8jLy9vjf//HW4uSJOngRVEU9whNJvEN1ubNm6mpqQFgx44dzJkzh/z8/N2u6devH5MmTQKgvLyck08+mdatW+/174uiyD8J+fPXv/419hn843vqH9/PpP5ZsiSiQ4eIG26I+PHH7AlW/5D4Bmvjxo0MHjyYhoYGGhoaGDhwIJdffjkvvvgiOTk5DBs2jMsvv5zZs2fTvn17TjrpJCZOnBj32JIkZaTaWnjkEXj5ZRg3Dvr3j3uieCQ+YHXu3JkVK1bs8c9vu+223b4fN25cU40kSVIirVoFN94IeXlQVQW5uXFPFJ/E3yKU9qW0tDTuEZRivqfJ4vuZOerr4amnoLQURoyAmTOzO1wB5ERRlH03Rg9TTk4O/uuSJOn/rF0LgwdDFMFrr8GZZ+79umz7GWqDJUmSDlkUwauvQrdu0LcvzJu373CVjRL/DJYkSUqtTZvg1lth/foQrM45J+6J0o8NliRJOmhvvgnnngtdusDSpYarfbHBkiRJB/TTTzByJCxZAm+9Bd27xz1RerPBkiRJ+/XBB6G1at48HL9guDowGyxJkrRXv/wCo0aF24KvvAK9e8c9UeawwZIkSXuoqICiIti8GT75xHB1qGywJEnSLjt3wpgxMGECPPccDBgQ90SZyYAlSZIA+PzzsOrm1FOhshJOOy3uiTKXtwglScpyDQ3wzDPQsycMGwazZhmujpQNliRJWWzdOrjppnBrsLwc2rWLe6JksMGSJCkL/WN3YNeucNllsGCB4SqVbLAkScoy338Pt90Ga9aEM666dIl7ouSxwZIkKYvMmBEODc3Ph2XLDFeNxQZLkqQsUFMDd98NH34I06fDBRfEPVGy2WBJkpRw8+aF1uq448KqG8NV47PBkiQpoXbsgAcegKlTw6qbPn3inih72GBJkpRAy5dDcTFUV4dVN4arpmWDJUlSguzcCY8/DuPHw9ixcN11cU+
 
UnQxYkiQlxBdfhFU3LVrAihWQlxf3RNnLW4SSJGW4hoawmLlHDxgyBMrKDFdxs8GSJCmDrV8fQtX27bB4MXToEPdEAhssSZIyUhTB5MnhQfaLLgrnWxmu0ocNliRJGeaHH2D4cFi9Gt5/HwoK4p5If2SDJUlSBnnnnXBoaLt2UFFhuEpXNliSJGWAn3+Ge+6BuXPDwaEXXhj3RNofGyxJktLcwoWhtTrqKFi50nCVCWywJElKU7/+Cg8+CK+/Di+9BFdeGfdEOlgGLEmS0lBlZTg0ND8/rLpp1SruiXQovEUoSVIaqauDRx+F3r1h1CiYNs1wlYlssCRJShOrV8OgQdC8eVjW3KZN3BPpcNlgSZIUsygKy5nPPx9uuAHee89wlelssCRJitGGDXDzzVBTA4sWwVlnxT2RUsEGS5KkGERR+O3AoiLo2dNwlTQ2WJIkNbEtW+D222HVKigrCyFLyWKDJUlSE5o1C7p0Cc9YLV9uuEoqGyxJkprAtm1w771hOfOUKVBaGvdEakw2WJIkNbKPPgqrburqwqobw1Xy2WBJktRIfvsNHnoIJk+GCROgX7+4J1JTMWBJktQIVq4Mq27atw9fn3JK3BOpKXmLUJKkFKqvhyeegEsugfvugzfeMFxlIxssSZJS5KuvYPBgOP54+PhjaNs27okUFxssSZKOUBSFZ6y6d4eBA2HOHMNVtrPBkiTpCHz7LQwdCps3w8KF0LFj3BMpHdhgSZJ0mKZOhcJCOO88WLzYcKX/Y4MlSdIh2roVRoyAqqpwMnvXrnFPpHRjgyVJ0iEoKwurbnJzYcUKw5X2zgZLkqSDsH17OHZh9myYNAl69Yp7IqUzGyxJkg5g8WIoKIAdO+CTTwxXOjAbLEmS9qG2FkaPhokT4fnn4Zpr4p5ImcKAJUnSXnz6aVh1c/rp4WH21q3jnkiZxFuEkiT9Tn09PPlkuA14113w9tuGKx06GyxJkv5uzZqw6uboo6GiAs44
 
I+6JlKlssCRJWS+K4OWXoaQErr0W5s41XOnI2GBJkrLaxo1wyy3w3XewYAF06hT3REoCGyxJUtaaNi0cv1BcDOXlhiuljg2WJCnr/Pgj3HlneM5q5sxwa1BKJRssSVJWmTMnrLpp2RIqKw1Xahw2WJKkrLB9O9x/f2isJk6Eiy+OeyIlmQ2WJCnxysuhsBBqasKqG8OVGpsNliQpsWpr4ZFHwhEM48ZB//5xT6RsYcCSJCXSqlVh1U1eXlh1k5sb90TKJt4ilCQlSn09PPUUlJbCiBHhmSvDlZqaDZYkKTHWrg2rbqIIli6FM8+MeyJlKxssSVLGiyJ49VXo1g369oV58wxXipcNliQpo23aBLfeCuvXh2B1zjlxTyTZYEmSMtibb8K554aDQ5cuNVwpfdhgSZIyzk8/wciRsGQJvPUWdO8e90TS7mywJEkZ5YMPQmvVvHk4fsFwpXSU+IC1YcMGevXqxdlnn03nzp159tln97hmwYIFnHzyyRQVFVFUVMSYMWNimFSStD+//AJ33QU33QQvvQTjx8NJJ8U9lbR3ib9FeMwxx/D0009TUFDAtm3bKC4u5tJLLyU/P3+363r27MnMmTNjmlKStD8VFeHQ0OLisOqmRYu4J5L2L/ENVm5uLgUFBQA0a9aMjh07Ul1dvcd1URQ19WiSpAPYuRP++le48kr4f/8PpkwxXCkzJD5g/d7atWupqqqipKRkj9eWLFlCQUEBV1xxBZ999lkM00mSfu/zz8PzVRUVUFkJAwbEPZF08LImYG3bto3+/fszduxYmjVrtttrxcXFfPPNN1RVVfGXv/yFq6++OqYpJUkNDfDMM9CzJwwbBrNmwWmnxT2VdGgS/wwWQF1dHf379+fGG2/kqquu2uP13weuPn36cMcdd7B161Zatmy5x7WjR4/e9XVpaSmlpaWNMbIkZaV168JD7Dt3Qnk5tGsX90Q6XPPnz2f+/PlxjxGbnCgLHj4aNGgQrVq14
 
umnn97r65s2baJ169YALFu2jAEDBrB27do9rsvJyfFZLUlqBFEE//Vf8G//BvfdF/4cfXTcUymVsu1naOIbrEWLFjFlyhQ6d+5MYWEhOTk5PPbYY6xbt46cnByGDRvG9OnTeeGFFzj22GM54YQTmDp1atxjS1LW+P57uO02WLMmnHHVpUvcE0lHLisarFTJtvQtSY1txgwYPjzcFhw9Go47Lu6J1Fiy7Wdo4hssSVL6qamBu++GDz+E6dPhggvinkhKraz5LUJJUnqYNy+sujnuuLDqxnClJLLBkiQ1iR074IEHYOpUeOUV6NMn7omkxmODJUlqdMuXhzU31dVh1Y3hSklngyVJajQ7d8Ljj4fFzGPHwnXXxT2R1DQMWJKkRvHFF2FBc4sWsGIF5OXFPZHUdLxFKElKqYYGeO456NEDhgyBsjLDlbKPDZYkKWXWrw+havt2WLwYOnSIeyIpHjZYkqQjFkUweXJ4kP2ii8L5VoYrZTMbLEnSEfnhh3Aa++rV8P77UFAQ90RS/GywJEmH7Z13wqGh7dpBRYXhSvoHGyxJ0iH7+We45x6YOzccHHrhhXFPJKUXGyxJ0iFZuDC0VkcdBStXGq6kvbHBkiQdlF9/hQcfhNdfh5degiuvjHsiKX0ZsCRJB1RZGQ4Nzc8Pq25atYp7Iim9eYtQkrRPdXXw6KPQuzeMGgXTphmupINhgyVJ2qvVq2HQIGjePCxrbtMm7omkzGGDJUnaTRSF5cznnw833ADvvWe4kg6VDZYkaZcNG+Dmm6GmBhYtgrPOinsiKTPZYEmSiKLw24FFRdCzp+FKOlI2WJKU5bZsgdtvh1WroKwshCxJR8YGS5Ky2KxZ0KVLeMZq+XLDlZQqNliSlIW2bYN77w3LmadMgdLSuCeSksUGS5KyzEcfhVU3dXVh1Y3hSko9GyxJyhK//QYPPQSTJ8OECdCvX9wTScllwJKkLLByZVh10759+PqUU+KeSEo2bxFKUo
 
LV18MTT8All8B998EbbxiupKZggyVJCfXVVzB4MBx/PHz8MbRtG/dEUvawwZKkhImi8IxV9+4wcCDMmWO4kpqaDZYkJci338LQobB5MyxcCB07xj2RlJ1ssCQpIaZOhcJCOO88WLzYcCXFyQZLkjLc1q0wYgRUVYWT2bt2jXsiSTZYkpTBysrCqpvcXFixwnAlpQsbLEnKQNu3h2MXZs+GSZOgV6+4J5L0ezZYkpRhFi+GggLYsQM++cRwJaUjGyxJyhC1tTB6NEycCM8/D9dcE/dEkvbFgCVJGeDTT8Oqm9NPDw+zt24d90SS9sdbhJKUxurr4cknw23Au+6Ct982XEmZwAZLktLUmjVh1c3RR0NFBZxxRtwTSTpYNliSlGaiCF5+GUpK4NprYe5cw5WUaWywJCmNbNwIt9wC330HCxZAp05xTyTpcNhgSVKamDYtHL9QXAzl5YYrKZPZYElSzH78Ee68MzxnNXNmuDUoKbPZYElSjObMCatuWraEykrDlZQUNliSFIPt2+H++0NjNXEiXHxx3BNJSiUbLElqYuXlUFgINTVh1Y3hSkoeGyxJaiK1tfDII+EIhnHjoH//uCeS1FgMWJLUBFatCqtu8vLCqpvc3LgnktSYvEUoSY2ovh6eegpKS2HEiPDMleFKSj4bLElqJGvXhlU3UQRLl8KZZ8Y9kaSmYoMlSSkWRfDqq9CtG/TtC/PmGa6kbGODJUkptGkT3HorrF8fgtU558Q9kaQ42GBJUoq8+Sace244OHTpUsOVlM1ssCTpCP30E4wcCUuWwFtvQffucU8kKW42WJJ0BD74ILRWzZuH4xcMV5LABkuSDssvv8CoUeG24CuvQO/ecU8kKZ3YYEnSIaqogKIi2Lw5rLoxXEn6IxssSTpIO3fCmDEwYQI89xwMGBD3RJLSlQFLkg7C55+HVTenngqVlXDaaXFPJCmdeYtQkvajoQGeeQZ69oRhw2DWLMOVpAOzwZKkfVi
 
3Dm66KdwaLC+Hdu3inkhSprDBkqQ/iCJ47TXo2hUuuwwWLDBcSTo0NliS9Dvffw+33QZr1oQzrrp0iXsiSZnIBkuS/m7GjHBoaH4+LFtmuJJ0+GywJGW9mhq4+2748EOYPh0uuCDuiSRlOhssSVlt3rzQWh13XFh1Y7iSlAo2WJKy0o4d8MADMHVqWHXTp0/cE0lKEhssSVln+XIoLobq6rDqxnAlKdVssCRljZ074fHHYfx4GDsWrrsu7okkJZUBS1JW+OKLsOqmRQtYsQLy8uKeSFKSeYtQUqI1NITFzD16wJAhUFZmuJLU+BIfsDZs2ECvXr04++yz6dy5M88+++xerxs5ciQdOnSgoKCAqqqqJp5SUmNYvx4uvRRefx0WL4bbb4ecnLinkpQNEh+wjjnmGJ5++mlWrVrFkiVLGD9+PP/zP/+z2zXvvvsuX3/9NV9++SUvvvgiw4cPj2laSakQRTB5cniQ/aKLwvlWHTrEPZWkbJL4Z7Byc3PJzc0FoFmzZnTs2JHq6mry8/N3XTNjxgwGDRoEQElJCTU1NWzatInWrVvHMrOkw/fDDzB8OKxeDe+/DwUFcU8kKRslvsH6vbVr11JVVUVJSclu/7y6upo2bdrs+j4vL4/q6uqmHk/SEXrnnXBoaLt2UFFhuJIUn8Q3WP+wbds2+vfvz9ixY2nWrFnc40hKoZ9/hnvugblzw8GhF14Y90SSsl1WBKy6ujr69+/PjTfeyFVXXbXH63l5eaxfv37X9xs2bCBvH79mNHr06F1fl5aWUlpamupxJR2ChQth8GC4+GJYuRKaN497IkkA8+fPZ/78+XGPEZucKIqiuIdobIMGDaJVq1Y8/fTTe3199uzZjB8/nlmzZlFeXs7dd99NeXn5Htfl5OSQBf+6pIzw66/w4IPhNwRfegmuvDLuiSTtT7b9DE18g7Vo0SKmTJlC586dKSwsJCcnh8cee4x169aRk5PDsGHDuPzyy5k9ezbt
 
27fnpJNOYuLEiXGPLWk/KivDoaH5+WHVTatWcU8kSbvLigYrVbItfUvppq4O/va3sObmP/8Trr/ec62kTJFtP0MT32BJSobVq2HQoPCM1fLl8Ltf/JWktJNVxzRIyjxRFJYzn38+3HADvPee4UpS+rPBkpS2NmyAm2+GmhpYtAjOOivuiSTp4NhgSUo7URR+O7CoCHr2NFxJyjw2WJLSypYtYSnzqlVQVhZCliRlGhssSWlj1izo0iU8Y7V8ueFKUuaywZIUu23b4N57w3LmKVPABQmSMp0NlqRYffRRWNBcVxdW3RiuJCWBDZakWPz2Gzz0EEyeDBMmQL9+cU8kSaljwJLU5FauDKtu2rcPX59yStwTSVJqeYtQUpOpr4cnnoBLLoH77oM33jBcSUomGyxJTeKrr2DwYDj+ePj4Y2jbNu6JJKnx2GBJalRRFJ6x6t4dBg6EOXMMV5KSzwZLUqP59lsYOhQ2b4aFC6Fjx7gnkqSmYYMlqVFMnQqFhXDeebB4seFKUnaxwZKUUlu3wogRUFUVTmbv2jXuiSSp6dlgSUqZsrKw6iY3F1asMFxJyl42WJKO2Pbt4diF2bNh0iTo1SvuiSQpXjZYko7I4sVQUAA7dsAnnxiuJAlssCQdptpaGD0aJk6E55+Ha66JeyJJSh8GLEmH7NNPw6qb008PD7O3bh33RJKUXrxFKOmg1dfDk0+G24B33QVvv224kqS9scGSdFDWrAmrbo4+Gioq4Iwz4p5IktKXDZak/YoiePllKCmBa6+FuXMNV5J0IDZYkvZp40a45Rb47jtYsAA6dYp7IknKDDZYkvZq2rRw/EJxMZSXG64k6VDYYEnazY8/wp13huesZs4MtwYlSYfGBkvSLnPmhFU3LVtCZaXhSpIOlw2WJLZvh/vvD43VxIlw8cVxTyRJmc0GS8py5eVQWAg1NWHVjeFKko6cDZaUpWpr4ZFHwhEM48ZB//5xTyRJyWHAkrLQqlVh1
 
U1eXlh1k5sb90SSlCzeIpSySH09PPUUlJbCiBHhmSvDlSSlng2WlCXWrg2rbqIIli6FM8+MeyJJSi4bLCnhoghefRW6dYO+fWHePMOVJDU2GywpwTZtgltvhfXrQ7A655y4J5Kk7GCDJSXUm2/CueeGg0OXLjVcSVJTssGSEuann2DkSFiyBN56C7p3j3siSco+NlhSgnzwQWitmjcPxy8YriQpHjZYUgL88guMGhVuC77yCvTuHfdEkpTdbLCkDFdRAUVFsHlzWHVjuJKk+NlgSRlq504YMwYmTIDnnoMBA+KeSJL0DwYsKQN9/nlYdXPqqVBZCaedFvdEkqTf8xahlEEaGuCZZ6BnTxg2DGbNMlxJUjqywZIyxLp1cNNN4dZgeTm0axf3RJKkfbHBktJcFMFrr0HXrnDZZbBggeFKktKdDZaUxr7/Hm67DdasCWdcdekS90SSpINhgyWlqRkzwqGh+fmwbJnhSpIyiQ2WlGZqauDuu+HDD2H6dLjggrgnkiQdKhssKY3Mmxdaq+OOC6tuDFeSlJlssKQ0sGMHPPAATJ0aVt306RP3RJKkI2GDJcVs+XIoLobq6rDqxnAlSZnPBkuKyc6d8PjjMH48jB0L110X90SSpFQxYEkx+OKLsOqmRQtYsQLy8uKeSJKUSt4ilJpQQ0NYzNyjBwwZAmVlhitJSiIbLKmJrF8fQtX27bB4MXToEPdEkqTGYoMlNbIogsmTw4PsF10UzrcyXElSstlgSY3ohx9g+HBYvRrefx8KCuKeSJLUFGywpEbyzjvh0NB27aCiwnAlSdnEBktKsZ9/hnvugblzw8GhF14Y90SSpKZmgyWl0MKFobU66ihYudJwJUnZygZLSoFff4UHH4TXX4eXXoIrr4x7IklSnAxY0hGqrAyHhubnh1U3rVrFPZEkKW7eIpQOU10dPPoo9O4No0bBtGmGK0lSYIMlHYbVq2HQIGjePCxrbtMm7okkSenEBks6BF
 
EUljOffz7ccAO8957hSpK0Jxss6SBt2AA33ww1NbBoEZx1VtwTSZLSlQ2WdABRFH47sKgIevY0XEmSDswGS9qPLVvg9tth1SooKwshS5KkA7HBkvZh1izo0iU8Y7V8ueFKknTwbLCkP9i2De69NyxnnjIFSkvjnkiSlGkS32ANHTqU1q1b06VLl72+vmDBAk4++WSKioooKipizJgxTTyh0slHH4VVN3V1YdWN4UqSdDgS32ANGTKEO++8k0GDBu3zmp49ezJz5swmnErp5rff4KGHYPJkmDAB+vWLeyJJUiZLfIPVo0cPWrRosd9roihqommUjlauhG7d4Msvw9eGK0nSkUp8wDoYS5YsoaCggCuuuILPPvss7nHUROrr4Ykn4JJL4L774I034JRT4p5KkpQEib9FeCDFxcV88803nHjiibz77rtcffXVrF69Ou6x1Mi++goGD4bjj4ePP4a2beOeSJKUJFkfsJo1a7br6z59+nDHHXewdetWWrZsudfrR48evevr0tJSSn0KOqNEEbz4IvzHf4Q/f/kLHGWPK0kpN3/+fObPnx/3GLHJibLgAaS1a9fSt29fPv300z1e27RpE61btwZg2bJlDBgwgLVr1+7178nJyfF5rQz27bcwdChs3gyTJkHHjnFPJEnZI9t+hia+wbr++uuZP38+W7ZsoW3btjz88MPU1taSk5PDsGHDmD59Oi+88ALHHnssJ5xwAlOnTo17ZDWCqVNh5Ei44w7493+HY4+NeyJJUpJlRYOVKtmWvpNg61YYMQKqqsIRDF27xj2RJGWnbPsZ6tMnSqyysrDqJjcXVqwwXEmSmk7ibxEq+2zfHo5dmD07PGvVq1fcE0mSso0NlhJl8WIoKIAdO+CTTwxXkqR42GApEWprYfRomDgRnn8errkm7okkSdnMgKWM9+mncOONcPrp4WH2v5+6IUlSbLxFqIxVXw9PPhluA951F7z9tuFKkpQebLCUkdasCat
 
ujj4aKirgjDPinkiSpP9jg6WMEkXw8stQUgLXXgtz5xquJEnpxwZLGWPjRrjlFvjuO1iwADp1insiSZL2zgZLGWHatHD8QnExlJcbriRJ6c0GS2ntxx/hzjvDc1YzZ4Zbg5IkpTsbLKWtOXPCqpuWLaGy0nAlScocNlhKO9u3w/33h8Zq4kS4+OK4J5Ik6dDYYCmtlJdDYSHU1IRVN4YrSVImssFSWqithUceCUcwjBsH/fvHPZEkSYfPgKXYrVoVVt3k5YVVN7m5cU8kSdKR8RahYlNfD089BaWlMGJEeObKcCVJSgIbLMVi7dqw6iaKYOlSOPPMuCeSJCl1bLDUpKIIXn0VunWDvn1h3jzDlSQpeWyw1GQ2bYJbb4X160OwOuecuCeSJKlx2GCpSbz5Jpx7bjg4dOlSw5UkKdlssNSofvoJRo6EJUvgrbege/e4J5IkqfHZYKnRfPBBaK2aNw/HLxiuJEnZwgZLKffLLzBqVLgt+Mor0Lt33BNJktS0bLCUUhUVUFQEmzeHVTeGK0lSNrLBUkrs3AljxsCECfDcczBgQNwTSZIUHwOWjtjnn4dVN6eeCpWVcNppcU8kSVK8vEWow9bQAM88Az17wrBhMGuW4UqSJLDB0mFatw5uuincGiwvh3bt4p5IkqT0YYOlQxJF8Npr0LUrXHYZLFhguJIk6Y9ssHTQvv8ebrsN1qwJZ1x16RL3RJIkpScbLB2UGTPCoaH5+bBsmeFKkqT9scHSftXUwN13w4cfwvTpcMEFcU8kSVL6s8HSPs2bF1qr444Lq24MV5IkHRwbLO1hxw544AGYOjWsuunTJ+6JJEnKLDZY2s3y5VBcDNXVYdWN4UqSpENngyUgnGf1+OMwfjyMHQvXXRf3RJIkZS4Dlvjii7DqpkULWLEC8vLinkiSpMzmLcIs1tAQFjP36AFDhkBZmeFKkqRUsMHKUuvXh1C1fTssXgwdOsQ9kSRJyWGDlWWiCCZPDg+y
 
X3RRON/KcCVJUmrZYGWRH36A4cNh9Wp4/30oKIh7IkmSkskGK0u88044NLRdO6ioMFxJktSYbLAS7uef4Z57YO7ccHDohRfGPZEkSclng5VgCxeG1uqoo2DlSsOVJElNxQYrgX79FR58EF5/HV56Ca68Mu6JJEnKLgashKmsDIeG5ueHVTetWsXOfgTxAAAHEklEQVQ9kSRJ2cdbhAlRVwePPgq9e8OoUTBtmuFKkqS42GAlwOrVMGgQNG8eljW3aRP3RJIkZTcbrAwWRWE58/nnww03wHvvGa4kSUoHNlgZasMGuPlmqKmBRYvgrLPinkiSJP2DDVaGiaLw24FFRdCzp+FKkqR0ZIOVQbZsgdtvh1WroKwshCxJkpR+bLAyxKxZ0KVLeMZq+XLDlSRJ6cwGK81t2wb33huWM0+ZAqWlcU8kSZIOxAYrjX30UVh1U1cXVt0YriRJygw2WGnot9/goYdg8mSYMAH69Yt7IkmSdCgMWGlm5cqw6qZ9+/D1KafEPZEkSTpU3iJME/X18MQTcMklcN998MYbhitJkjKVDVYa+OorGDwYjj8ePv4Y2raNeyJJknQkbLBiFEXhGavu3WHgQJgzx3AlSVIS2GDF5NtvYehQ2LwZFi6Ejh3jnkiSJKWKDVYMpk6FwkI47zxYvNhwJUlS0thgNaGtW2HECKiqCiezd+0a90SSJKkx2GA1kbKysOomNxdWrDBcSZKUZDZYjWz79nDswuzZMGkS9OoV90SSJKmx2WA1osWLoaAAduyATz4xXEmSlC1ssBpBbS2MHg0TJ8Lzz8M118Q9kSRJakoGrBT79NOw6ub008PD7K1bxz2RJElqat4iTJH6enjyyXAb8K674O23DVeSJGUrG6wUWLMmrLo5+mioqIAzzoh7IkmSFKfEN1hDhw6ldevWdOnSZZ/XjBw5kg4dOlBQUEBVVdVB/91RBC+/DCUlcO21MHeu4UqSJGVBwBoyZAjvvffePl9/9
 
913+frrr/nyyy958cUXGT58+EH9vRs3wpVXhl2CCxbAv/4rHJX4f5vJMn/+/LhHUIr5niaL76cyWeIjQY8ePWjRosU+X58xYwaDBg0CoKSkhJqaGjZt2rTfv3PatHD8QnExlJdDp04pHVlNxP/zTh7f02Tx/VQmy/pnsKqrq2nTps2u7/Py8qiurqb1Pp5Qv+GG8JzVzJnh1qAkSdIfZX3AOlQtWkBlJZx4YtyTSJKkdJUTRVEU9xCNbd26dfTt25dPPvlkj9eGDx/On//8ZwYOHAhAfn4+CxYs2GuDlZOT0+izSpKUVFkQOXbJigYriqJ9vqn9+vVj/PjxDBw4kPLyck4++eR93h7Mpv8wJEnS4Ut8wLr++uuZP38+W7ZsoW3btjz88MPU1taSk5PDsGHDuPzyy5k9ezbt27fnpJNOYuLEiXGPLEmSMlxW3CKUJElqSok/puFwlJWVkZ+fz5/+9Cf+9re/7fWawz2cVE3vQO/nggULOPnkkykqKqKoqIgxY8bEMKUOVmMeHqymd6D3089nZtmwYQO9evXi7LPPpnPnzjz77LN7vS4rPqORdlNfXx+1a9cuWrt2bVRbWxude+650eeff77bNbNnz44uv/zyKIqiqLy8PCopKYljVB2Eg3k/58+fH/Xt2zemCXWoPvzww6iysjLq3LnzXl/385lZDvR++vnMLBs3bowqKyujKIqi//3f/43+9Kc/Ze3PUBusP1i2bBkdOnTg9NNP59hjj+W6665jxowZu11zOIeTKh4H836Cv8CQSRrj8GDF50DvJ/j5zCS5ubkUFBQA0KxZMzp27Eh1dfVu12TLZ9SA9Qd/PHj0n//5n/f4j2Nfh5Mq/RzM+wmwZMkSCgoKuOKKK/jss8+ackSlmJ/P5PHzmZnWrl1LVVUVJX84lTtbPqOJ/y1C6UCKi4v55ptvOPHEE3n33Xe5+uqrWb16ddxjScLPZ6batm0b/fv3Z+zYsTRr1izucWJhg/
 
UHeXl5fPPNN7u+37BhA3l5eXtcs379+v1eo/RwMO9ns2bNOPHvR/P36dOHnTt3snXr1iadU6nj5zNZ/Hxmnrq6Ovr378+NN97IVVddtcfr2fIZNWD9Qbdu3fjqq69Yt24dtbW1/Pd//zf9+vXb7Zp+/foxadIkgAMeTqp4Hcz7+ft7/8uWLSOKIlq2bNnUo+oQRAc4PNjPZ2bZ3/vp5zPz3HzzzXTq1Im77rprr69ny2fUW4R/cPTRRzNu3DguvfRSGhoaGDp0KB07duTFF1/0cNIMdDDv5/Tp03nhhRc49thjOeGEE5g6dWrcY2s/PDw4WQ70fvr5zCyLFi1iypQpdO7cmcLCQnJycnjsscdYt25d1n1GPWhUkiQpxbxFKEmSlGIGLEmSpBQzYEmSJKWYAUuSJCnFDFiSJEkpZsCSJElKMQOWJElSihmwJEmSUsyAJUmSlGIGLEmSpBQzYEmSJKWYAUuSJCnFDFiSJEkpZsCSJElKMQOWJElSihmwJEmSUsyAJUmSlGIGLEmSpBQzYEmSJKWYAUuSJCnFDFiSJEkpZsCSJElKMQOWJElSihmwJEmSUsyAJUmSlGIGLEmSpBQzYEmSJKXY/wfkKCsZlpS9sAAAAABJRU5ErkJggg\u003d\u003d
 style\u003d\u0027width\u003dauto;height:auto\u0027\u003e\u003cdiv\u003e\n"
-          }
-        ]
-      },
-      "dateCreated": "Nov 2, 2016 2:53:47 PM",
-      "status": "READY",
-      "errorMessage": "",
-      "progressUpdateIntervalMs": 500
-    },
-    {
-      "title": "Second line",
-      "text": "%python\nplt.plot([3, 2, 1], 
label\u003dr\u0027$y\u003d3-x$\u0027)",
-      "dateUpdated": "Nov 2, 2016 2:53:47 PM",
-      "config": {
-        "colWidth": 12.0,
-        "editorMode": "ace/mode/python",
-        "title": true,
-        "enabled": true,
-        "results": [
-          {
-            "graph": {
-              "mode": "table",
-              "height": 289.0,
-              "optionOpen": false,
-              "keys": [],
-              "values": [],
-              "groups": [],
-              "scatter": {}
-            }
-          }
-        ]
-      },
-      "settings": {
-        "params": {},
-        "forms": {}
-      },
-      "apps": [],
-      "jobName": "paragraph_1478123627961_-1477780847",
-      "id": "20161101-195937_907325325",
-      "results": {
-        "code": "SUCCESS",
-        "msg": [
-          {
-            "type": "HTML",
-            "data": "\u003cdiv 
style\u003d\u0027width:auto;height:auto\u0027\u003e\u003cimg 
src\u003d
 
ISIKwoWA0aNKC0tJSDBw+ybds2PvnkE9ORREREJIAF/D1Y/+zaa6/ljjvuYO3atdx8883f/314eDhVVVXf//ngwYOEh4f/6N//66VFERERuXwul8t0BK8J+AnW8ePHOXnyJACnT59m/fr1dO/e/QePGTlyJLm5uQAUFRXRokULwsLCLvh89y2/j5/N+xlFVUW4XC798uNfjz32mPEM+qWvqX7p6xmovwoLXURGurjvPhfffGNPsfq7gJ9gHT58mPT0dOrq6qirq2P8+PEMHTqU7OxsgoKCyMjIYOjQoaxZs4abbrqJ4OBgXnvttYs+3+tjXuetT95i5J9GkhGfwW9v/y1NGjbx4v8iERER33X2LDz5JCxcCC+9BGPHmk5kRsAXrKioKD766KMf/f0DDzzwgz+/9NJLl/2cY28eS7+O/Zi6aip9Xu1D7uhcerbtedVZRURE/NnOnZCaCuHhUFYG7dqZTmROwF8irC/tQ9uz6t9XMa3XNJKXJDOncA51rjrTscQNycnJpiOIh+lrGlj09fQftbUwezYkJ8P06bBypd3lCiDI5XLZd2H0CgUFBXGh/1z7v9lPel46DYMasnj0Yrq06OL9cCIiIgZUVkJ6OrhcsHgxdO164cddbA0NVJpgeUDXll0pSC9gWOQwEhcmklOaY9WLSERE7ONyQU4OJCbCiBHw/vsXL1c20gTLDZfTvncc3UHqilQ6t+jMguELCAu58LsRRURE/NXRozB1KlRVweuvwy23XPrfaIIlVyUqLIrtU7dzS5tbiMmKYcWuFaYjiYiIeMzy5RATA9HRsG3b5ZUrG2mC5QZ323dhVSFpeWn07diXF+96keuaXVeP6UREROrPiRMwYwYUFkJuLvTp496/1wRLPKZPxz6UPVBGcONgorOieW//e6YjiYiIuO2995ypVWios/2Cu+XKRppgueFq2ve6feuYsnIKY28eyzODnuGaxtd4OJ2IiIhn/e1vMGuWc1lw0SJ
 
ISbny59IES+pFyk0pVEyr4FjNMeIXxFNcXWw6koiIyEUVF0N8PBw/DhUVV1eubKQJlhs81b6XfryUGWtnMK3XNB697VEaN2zsgXQiIiJX79w5eOopyMqCefNg3DjPPK9tEywVLDd48sVx6K+HuH/l/RyrOcbrY16nR5seHnleERGRK7Vrl3PUTdu2ziXBDh0899y2FSxdIjSkQ2gHVt+7mqnxUxmweABzi+bqqB0RETGirg5eeAEGDICMDFi92rPlykaaYLmhvtr3vq/3kZ6XTtOGTVk8ejGdruvk8c8hIiJyIQcOwMSJzqXBJUsgIqJ+Po8mWOJ1N7W6iU0TN5ESkULCggSWlC2x6kUoIiLe9/ezA3v1grvugo0b669c2UgTLDd4o32XHykndUUqEa0iyB6eTdvgtvX6+URExD7HjsEDD8D+/c5RN9HR9f85NcESo2LaxVA8tZhu13cjJiuG/E/zTUcSEZEAkp/vbBravTts3+6dcmUjTbDc4O32veWLLaTnpXN759t54a4XuLbptV773CIiElhOnoSHH4bNm517rfr18+7n1wRLfEb/Tv0pzyynScMmRL8STUFlgelIIiLih95/35laNW3qHHXj7XJlI02w3GCyfa/Zu4apq6Yyvud4nh70NM0aNTOSQ0RE/Mfp0/Doo7B0qbOv1ZAh5rJogiU+aWjkUCoyKzj47UESFiRQcqjEdCQREfFhJSWQkADV1c5RNybLlY00wXKDL7Rvl8vFnz7+EzPXzuSh3g8x67ZZNGrQyGgmERHxHefOwTPPwMsvw9y5cM89phM5fGEN9SYVLDf40ouj+ttqJq+czInvTpA7OpdurbuZjiQiIobt3u0cddOyJeTkQHi46UT/4EtrqDfoEqGfCr82nLUT1pIek06/nH7M2zZPR+2IiFiqrs45mLl/f5g0Cdau9a1yZSNNsNzgq+1771d7SctLI6RJCDkjc+h4XUfTkURExEuqqpxSVVMDubkQ
 
GWk60YX56hpaXzTBCgCR10eyedJm7uhyBwkLEnij4g2rXsQiIjZyuZxd2BMSYNAgZ38rXy1XNtIEyw3+0L5LD5eSuiKV7q27kzU8i9bNW5uOJCIiHvbll5CZCXv2OCUrNtZ0okvzhzXUkzTBCjBx7eP4MONDbmxxI9GvRPP2nrdNRxIREQ9atcrZNDQiAoqL/aNc2UgTLDf4W/vedGATE/MmMujGQcxJmUNo01DTkURE5Ap9+y384hewYYNz1M1tt5lO5B5/W0OvliZYAWxA5wGUZ5YDEJMVw6YDmwwnEhGRK7FpkzO1atAAysv9r1zZSBMsN/hz+357z9tkrMpgQtQEnhz4pI7aERHxA999B7/5Dbz5JixYAMOHm0505fx5Db0SmmBZYvjPhlMxrYLPT3xOrwW9KD1cajqSiIj8hNJS6NULKiudo278uVzZSAXLIq2bt2bZvy3j1/1/TcobKTy9+WnO1503HUtERP7J+fPw+99DSgrMmgXLlkFrvSHc7+gSoRsCabxZdbKKSfmTqDlXQ+7oXCKv1+YpIiKm7dkDaWkQGuocddMxgPaNDqQ19HJogmWpjtd15N3Ud5kQNYG+OX2ZXzzfqhe+iIgvcbmcw5n79oX77oN16wKrXNlIEyw3BGr73n18N2l5abRo1oKckTmEX6sDrEREvOXgQZg8GU6edI666dbNdKL6Eahr6MVogiV0a92NrZO30r9jf+Ky4/jjjj9a9U0gImKCy+W8OzA+HgYMgK1bA7dc2UgTLDfY0L5LDpWQuiKVqLAo5g+dz/XNrzcdSUQk4Hz1FUybBjt3OkfdxMebTlT/bFhD/5kmWPIDCR0SKMko4YbQG4jOimbN3jWmI4mIBJTVqyE62rnHqqTEjnJlI02w3GBb+y6oLGBi3kRSIlKYnTKbkCYhpiOJiPitU6fgkUfg3XfhtdcgOdl0Iu+ybQ3VBEsuKrlLMhXTKjhXd46YrBi2frHVdCQREb+0ZYtz1
 
M35885RN7aVKxtpguUG29r3P8v/NJ/M1Zmkx6TzRPITNG3U1HQkERGfd+YM/O53zn1WWVkwcqTpRObYtoZqgiWXZVT3UZRnlrP7q90kLkyk/Ei56UgiIj6tvBwSE2HvXuf3NpcrG6lgyWVrG9yW5eOW80ifR7jz9Tt5dsuz1NbVmo4lIuJTamvh2Wdh8GD45S/hz3+GNm1MpxJv0yVCN9g23vwpB04cYFL+JM7UniF3dC4RrSJMRxIRMW7fPkhPh2bNnBvZO3Uynch32LaGaoIlV6Rzi878Je0vjLt5HLe+eivZH2Zb9Y0jIvLPXC7nHqs+fWD8eFi/XuXKdppgucG29n25dn25i9QVqbQJbsOrI1+lQ2gH05FERLzm0CGYMgWOH3eOuunRw3Qi32TbGqoJlly1Hm16UDilkKTwJOKy41j68VLTkUREvGLpUoiLg1tvhQ8+ULmSf9AEyw22te8rUVxdTOqKVOLbx/PS0JdodU0r05FERDzu669h+nQoK3O2YOjVy3Qi32fbGqoJlnhUYngipQ+U0ja4LdGvRLNu3zrTkUREPGrtWueom3bt4KOPVK7kwjTBcoNt7ftqbfh8A5PyJzEschjPD36e4CbBpiOJiFyxmhpn24U1a5x3CA4caDqRf7FtDdUES+rNwBsHUpFZQc25GmKzYymsKjQdSUTkinzwAcTGwunTUFGhciWXpgmWG2xr3560fNdyHlz9IFPipvBY8mM0adjEdCQRkUs6exYef9yZWM2fD2PGmE7kv2xbQzXBEq+4u8fdlGeWs+PYDnov7M2OoztMRxIR+Uk7dkDv3rBzp3Mzu8qVuEMFS7wmLCSM/HvymZk0k4G5A3l+6/M6akdEfE5tLfzhD85lwJkzIS8PwsJMpxJ/o0uEbrBtvFmfKk9UMjFvIrWuWpaMXkLXll1NRxIRYf9+56ibhg1h8WLo0sV0osBh2xqqCZYY0aVFFzakb2BM9zEkLUpi0UeLrPrGEx
 
Hf4nLBwoWQlAR33w0bNqhcydXRBMsNtrVvb9l5bCepK1LpENqBRSMX0S6knelIImKRw4fh/vvhyBFn09CbbzadKDDZtoZqgiXG9Wzbk6L7i4hvH09sVixvffKW6UgiYolly5ztFxISoKhI5Uo8RxMsN9jWvk3YdnAbqStS6R3em3lD5tHympamI4lIAPrmG3joISgudg5oTkoynSjw2baGaoIlPiXphiTKMsto2awlMVkxrP9svelIIhJg1q93jrpp1QpKS1WupH5oguUG29q3aes/W8+UlVMY1W0Uzw1+juaNm5uOJCJ+rKYGfvUrWLkScnLgzjtNJ7KLbWuoJljiswZHDKY8s5wTZ04Qlx3HtoPbTEcSET9VVARxcXDypHPUjcqV1DdNsNxgW/v2JW998hbT10wnIz6D397+Wx21IyKX5exZePJJZwuGl16CsWNNJ7KXbWuoCpYbbHtx+JrDfz3M1FVTOXzqMLmjc+nZtqfpSCLiw3buhNRUCA93ClY77QBjlG1rqC4Rit9oH9qeVf++imm9ppG8JJk5hXOoc9WZjiUiPqa2FmbPhuRkmD7duedK5Uq8TRMsN9jWvn3Z/m/2k56XTsOghiwevZguLbqYjiQiPqCy0jnqxuVyjrrpqlO4fIZta6gmWOKXurbsSkF6AcMih5G4MJGc0hyrvnFF5IdcLuedgYmJMGIEvP++ypWYpQmWG2xr3/5ix9EdpK5IpXOLziwYvoCwEB17L2KTo0dh6lSoqnKOurnlFtOJ5EJsW0M1wRK/FxUWxfap27mlzS3EZMWwYtcK05FExEuWL4eYGGfj0G3bVK7Ed2iC5Qbb2rc/KqwqJC0vjb4d+/LiXS9yXbPrTEcSkXpw4gTMmAGFhc5RN336mE4kl2LbGqoJlgSUPh37UPZAGcGNg4nOiua9/e+ZjiQiHvbee87UKjQUyspUrsQ3BXzBOnjwIAMHDqRnz55ERUXx4osv/ugxGzdupEWLFsT
 
HxxMfH89TTz1lIKl4SnCTYOYPm8+C4QtIz0vn4bUPc/rcadOxROQq/e1vMHMmTJwICxbAyy9DcLDpVCIXFvCXCI8cOcKRI0eIjY3l1KlTJCQkkJ+fT/fu3b9/zMaNG5k9ezYrV678yeeybbwZCL4+/TU/X/NzSo+Ukjs6l8TwRNORROQKFBc7m4YmJDg7srdsaTqRuMu2NTTgJ1jt2rUjNjYWgJCQEHr06EF1dfWPHmfTF90mra5pxZv/35s8fvvjDP/jcB4veJxztedMxxKRy3TuHDz2GAwfDv/xH/Df/61yJf4h4AvWP6usrKSsrIykpKQffaywsJDY2FiGDRvGJ598YiCd1Kfxt4yn9IFStldvp8+rfdj15S7TkUTkEnbtcu6vKi6G0lIYN850IpHLZ03BOnXqFGPHjmXu3LmEhIT84GMJCQl88cUXlJWV8fOf/5zRo0cbSin1qUNoB1bfu5qp8VMZsHgAc4vm6qgdER9UVwcvvAADBkBGBqxeDR06mE4l4p6AvwcL4Pz58wwfPpwhQ4Ywc+bMSz7+xhtvpKSkhFatWv3g74OCgnjssce+/3NycjLJycmejitesO/rfaTnpdO0YVMWj15Mp+s6mY4kIsCBA85N7OfOwZIlEBFhOpFcqYKCAgoKCr7/8xNPPGHV7ThWFKy0tDRat27NnDlzLvjxo0ePEhbm7P69fft2xo0bR2Vl5Y8eZ9sNeoGutq6W//zgP/nPwv/kPwf/J2kxaQQFBZmOJWIll8spVP/n/8Avf+n8atjQdCrxJNvW0IAvWFu3bmXAgAFERUURFBREUFAQTz/9NAcOHCAoKIiMjAxefvllXnnlFRo3bsw111zDf/3Xf13wPi3bXhy2KD9STuqKVCJaRZA9PJu2wW1NRxKxyrFj8MADsH+/c9RNdLTpRFIfbFtDA75geZJtLw6bnDl/hscKHmNJ+RKyhmUxqvso05FErJCfD5mZzmXBxx+Hpk1NJ

<TRUNCATED>

Reply via email to