[ https://issues.apache.org/jira/browse/HADOOP-18707?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17728118#comment-17728118 ]
Steve Loughran commented on HADOOP-18707: ----------------------------------------- good to hear this is working. # could you also try settings hadoop.tmp.dir to something else just to see if that makes it go away too? #. storediag should actually attempt to create a file in the temp dir. did that work? > Cannot write to Azure Datalake Gen2 (abfs/abfss) after Spark 3.1.2 > ------------------------------------------------------------------ > > Key: HADOOP-18707 > URL: https://issues.apache.org/jira/browse/HADOOP-18707 > Project: Hadoop Common > Issue Type: Bug > Components: fs/azure > Affects Versions: 3.3.2, 3.3.5, 3.3.4 > Reporter: Nicolas PHUNG > Priority: Major > Fix For: 3.3.4 > > > Hello, > I have an issue with Spark 3.3.2 & Spark 3.4.0 to write into Azure Data Lake > Storage Gen2 (abfs/abfss scheme). I've got the following errors: > {code:java} > warn 13:12:47.554: StdErr from Kernel Process 23/04/19 13:12:47 ERROR > FileFormatWriter: Aborting job > 6a75949c-1473-4445-b8ab-d125be3f0f21.org.apache.spark.SparkException: Job > aborted due to stage failure: Task 1 in stage 0.0 failed 1 times, most recent > failure: Lost task 1.0 in stage 0.0 (TID 1) (myhost executor driver): > org.apache.hadoop.util.DiskChecker$DiskErrorException: Could not find any > valid local directory for datablock-0001- at > org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.getLocalPathForWrite(LocalDirAllocator.java:462) > at > org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:165) > at > org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:146) > at > org.apache.hadoop.fs.store.DataBlocks$DiskBlockFactory.createTmpFileForWrite(DataBlocks.java:980) > at > org.apache.hadoop.fs.store.DataBlocks$DiskBlockFactory.create(DataBlocks.java:960) > at > org.apache.hadoop.fs.azurebfs.services.AbfsOutputStream.createBlockIfNeeded(AbfsOutputStream.java:262) > at > org.apache.hadoop.fs.azurebfs.services.AbfsOutputStream.<init>(AbfsOutputStream.java:173) > at > org.apache.hadoop.fs.azurebfs.AzureBlobFileSystemStore.createFile(AzureBlobFileSystemStore.java:580) > at > org.apache.hadoop.fs.azurebfs.AzureBlobFileSystem.create(AzureBlobFileSystem.java:301) > at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:1195) at > org.apache.hadoop.fs.FileSystem.create(FileSystem.java:1175) at > org.apache.parquet.hadoop.util.HadoopOutputFile.create(HadoopOutputFile.java:74) > at > org.apache.parquet.hadoop.ParquetFileWriter.<init>(ParquetFileWriter.java:347) > at > org.apache.parquet.hadoop.ParquetFileWriter.<init>(ParquetFileWriter.java:314) > at > org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:480) > at > org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:420) > at > org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:409) > at > org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.<init>(ParquetOutputWriter.scala:36) > at > org.apache.spark.sql.execution.datasources.parquet.ParquetUtils$$anon$1.newInstance(ParquetUtils.scala:490) > at > org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:161) > at > org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:146) > at > org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:389) > at > org.apache.spark.sql.execution.datasources.WriteFilesExec.$anonfun$doExecuteWrite$1(WriteFiles.scala:100) > at > org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:888) > at > org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:888) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364) at > org.apache.spark.rdd.RDD.iterator(RDD.scala:328) at > org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92) at > org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161) > at org.apache.spark.scheduler.Task.run(Task.scala:139) at > org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554) > at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) > Driver stacktrace: at > org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2785) > at > org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2721) > at > org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2720) > at > scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) > at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2720) > at > org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1206) > at > org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1206) > at scala.Option.foreach(Option.scala:407) at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1206) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2984) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2923) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2912) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at > org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:971) at > org.apache.spark.SparkContext.runJob(SparkContext.scala:2263) at > org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$executeWrite$4(FileFormatWriter.scala:307) > at > org.apache.spark.sql.execution.datasources.FileFormatWriter$.writeAndCommit(FileFormatWriter.scala:271) > at > org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeWrite(FileFormatWriter.scala:304) > at > org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:190) > at > org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:190) > at > org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113) > at > org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:111) > at > org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:125) > at > org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:98) > at > org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:118) > at > org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:195) > at > org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:103) > at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) > at > org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98) > at > org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:94) > at > org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:512) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:104) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:512) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:31) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:488) > at > org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94) > at > org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:81) > at > org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:79) > at > org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:133) > at > org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:856) > at > org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:387) > at > org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:360) > at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:239) > at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:789) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) at > py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at > py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374) at > py4j.Gateway.invoke(Gateway.java:282) at > py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at > py4j.commands.CallCommand.execute(CallCommand.java:79) at > py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182) > at py4j.ClientServerConnection.run(ClientServerConnection.java:106) at > java.lang.Thread.run(Thread.java:748)Caused by: > org.apache.hadoop.util.DiskChecker$DiskErrorException: Could not find any > valid local directory for datablock-0001- at > org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.getLocalPathForWrite(LocalDirAllocator.java:462) > at > org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:165) > at > org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:146) > at > org.apache.hadoop.fs.store.DataBlocks$DiskBlockFactory.createTmpFileForWrite(DataBlocks.java:980) > at > org.apache.hadoop.fs.store.DataBlocks$DiskBlockFactory.create(DataBlocks.java:960) > at > org.apache.hadoop.fs.azurebfs.services.AbfsOutputStream.createBlockIfNeeded(AbfsOutputStream.java:262) > at > org.apache.hadoop.fs.azurebfs.services.AbfsOutputStream.<init>(AbfsOutputStream.java:173) > at > org.apache.hadoop.fs.azurebfs.AzureBlobFileSystemStore.createFile(AzureBlobFileSystemStore.java:580) > at > org.apache.hadoop.fs.azurebfs.AzureBlobFileSystem.create(AzureBlobFileSystem.java:301) > at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:1195) at > org.apache.hadoop.fs.FileSystem.create(FileSystem.java:1175) at > org.apache.parquet.hadoop.util.HadoopOutputFile.create(HadoopOutputFile.java:74) > at > org.apache.parquet.hadoop.ParquetFileWriter.<init>(ParquetFileWriter.java:347) > at > org.apache.parquet.hadoop.ParquetFileWriter.<init>(ParquetFileWriter.java:314) > at > org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:480) > at > org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:420) > at > org.apache.parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:409) > at > org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.<init>(ParquetOutputWriter.scala:36) > at > org.apache.spark.sql.execution.datasources.parquet.ParquetUtils$$anon$1.newInstance(ParquetUtils.scala:490) > at > org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:161) > at > org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:146) > at > org.apache.spark.sql.execution.datasources.FileFormatWriter$.executeTask(FileFormatWriter.scala:389) > at > org.apache.spark.sql.execution.datasources.WriteFilesExec.$anonfun$doExecuteWrite$1(WriteFiles.scala:100) > at > org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:888) > at > org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:888) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364) at > org.apache.spark.rdd.RDD.iterator(RDD.scala:328) at > org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92) at > org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161) > at org.apache.spark.scheduler.Task.run(Task.scala:139) at > org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554) > at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > ... 1 more {code} > Before that, I was able to write into Azure Data Lake Storage with Spark > 3.1.2 with hadoop-azure 3.2.1 without encountering this error. > Here's what I have tried but with no success: > * Spark 3.3.2 with hadoop-azure 3.3.2 > * Spark 3.3.2 with hadoop-azure 3.3.5 > * Spark 3.4.0 with hadoop-azure 3.3.4 > * Spark 3.4.0 with hadoop-azure 3.3.5 > Regards, > PS: I have posted the issues on Spark too > https://issues.apache.org/jira/browse/SPARK-43188 -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: common-issues-unsubscr...@hadoop.apache.org For additional commands, e-mail: common-issues-h...@hadoop.apache.org