[
https://issues.apache.org/jira/browse/HADOOP-3670?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12610565#action_12610565
]
Amareshwari Sriramadasu commented on HADOOP-3670:
-------------------------------------------------
Looking at the hprof file, the following are the observations:
Job tracker's memory has reached 2.4GB, in which byte[] objects are
contributing to 79% of the memory. i.e. 1.88GB.
Detailed allocation of byte[] objects contributing the high memory is shown
below.
{noformat}
+---org.apache.hadoop.io.BytesWritable | 120,168 99 % |
1,822,933,232 97 % |
| +---org.apache.hadoop.mapred.JobClient$RawSplit | 63,536 53 % |
986,661,560 52 % |
| | +---org.apache.hadoop.mapred.TaskInProgress | 60,725 50 % |
936,490,832 50 % |
| | | +---org.apache.hadoop.mapred.TaskInProgress[] | 60,478 50 % |
936,433,528 50 % |
| | | | +---org.apache.hadoop.mapred.JobInProgress | 60,478 50 % |
936,433,528 50 % |
| | | | +---<Objects are retained by instances of several classes> |
60,478 50 % | 936,433,528 50 % |
| | | | +---java.lang.Object[] | |
|
| | | | +---org.apache.hadoop.mapred.TaskInProgress |
| |
| | | | +---java.util.TreeMap$Entry | |
|
| +---org.apache.hadoop.mapred.MapTask | 56,629 47 % |
836,271,336 44 % |
| | +---<Objects are retained by instances of several classes> |
56,629 47 % | 836,271,336 44 % |
| | +---java.util.TreeMap$Entry | |
|
| | +---org.apache.hadoop.mapred.Task$FileSystemStatisticUpdater |
| |
{noformat}
Clearly, the RawSplits in TIP are contributing almost 1GB. And MapTask objects
are contributing another 1GB .
Again, In MapTask, the BytesWritable split is contributing to the high memory.
> JobTracker running out of heap space
> ------------------------------------
>
> Key: HADOOP-3670
> URL: https://issues.apache.org/jira/browse/HADOOP-3670
> Project: Hadoop Core
> Issue Type: Bug
> Components: mapred
> Affects Versions: 0.17.0
> Reporter: Christian Kunz
> Assignee: Amareshwari Sriramadasu
> Attachments: memory-dump.txt
>
>
> The JobTracker on our 0.17.0 installation runs out of heap space rather
> quickly, with less than 100 jobs (at one time even after just 16 jobs).
> Running in 64-bit mode with larger heap space does not help -- it will use up
> all available RAM.
> 2008-06-28 05:17:06,661 INFO org.apache.hadoop.ipc.Server: IPC Server handler
> 62 on 9020, call he
> artbeat([EMAIL PROTECTED], false, true, 17384) from xxx.xxx.xxx.xxx
> :51802: error: java.io.IOException: java.lang.OutOfMemoryError: GC overhead
> limit exceeded
> java.io.IOException: java.lang.OutOfMemoryError: GC overhead limit exceeded
--
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.