New Developments regarding Ivermectin.  (not to be confused with "Avermectin".
https://www.healio.com/news/primary-care/20201208/this-was-a-gift-to-us-ivermectin-effective-for-covid19-prophylaxis-treatment


In a press conference, researchers said that ivermectin is an FDA-approved 
anti-parasitic drug that has been available for approximately 40 years and 
previously earned researchers a Nobel Prize.


| 
| 
| 
|  |  |

 |

 |
| 
|  | 
Both ivermectin, permethrin yield high clearance rates in scabies

In scabies treatment, oral ivermectin at 200 µg/kg may be associated with 
slightly lower rates of complete clear...
 |

 |

 |






Ivermectin is a key factor in the alliance’s I-MASK+ protocol for prophylaxis 
and early treatment of outpatients with COVID-19. In the protocol, those at 
high risk for COVID-19 infection receive ivermectin at 0.2 mg/kg on day 1 and 
day 3, and weekly for 4 weeks; those who were exposed to COVID-19 receive the 
same dose at day 1 and day 3; and both groups receive daily doses of vitamin 
D3, vitamin C, quercetin, zinc and melatonin. For early outpatients with 
COVID-19, the protocol calls for one dose of ivermectin at 0.2 mg/kg at day 1 
and day 3, along with the same daily vitamins and 325 mg per day of aspirin.

During the press conference, Marik said that much of the data available on 
ivermectin in the treatment and prevention of COVID-19 has been published since 
August, which was the last time the NIH updated its recommendations for the 
novel coronavirus.

Thus far, Marik said, studies have indicated that ivermectin has demonstrated 
efficacy in preventing COVID-19 infection prior to and after exposure to 
COVID-19. He also said that it has been shown to effectively treat the virus in 
the early symptomatic stages and among patients hospitalized with COVID-19.


| 
| 
| 
|  |  |

 |

 |
| 
|  | 
New trial evaluates potential COVID-19 treatments in high-risk patients

Researchers from the University of Kentucky are conducting a clinical trial to 
evaluate the effectiveness of azi...
 |

 |

 |





On Friday, April 3, 2020, 06:28:51 PM PDT, jim bell <jdb10...@yahoo.com> wrote:
 
 
 
Anti-parasitic drug kills coronavirus cell cultures in just 48 hours


A team of Australian researchers at Monash University in Melbourne have found 
that Ivermectin — an FDA-approved anti-parasitic drug that has been used to 
effectively fight viruses including HIV, Influenza, and Zika — was able to stop 
the SARS-CoV-2 virus from growing in cell cultures.

While promising, the drug has yet to be shown to have the same effect inside 
the human body, because the Australian research was conducted “in vitro,” 
meaning it was in a Petri dish at a lab. The researchers are still trying to 
nail down funding for pre-clinical testing and clinical trials, after which 
they’d have to start the long approval process for the trials themselves.

The results, though, are promising. In just 48 hours, the scientists say, all 
genetic material of the virus was eradicated.

“We found that even a single dose could essentially remove all viral RNA by 48 
hours and that even at 24 hours there was a really significant reduction in 
it,” Kylie Wagstaff, lead researcher and co-author of the study published today 
in Antiviral Research, said in a statement.

“Ivermectin is very widely used and seen as a safe drug,” Wagstaff said. “We 
need to figure out now whether the dosage you can use it at in humans will be 
effective — that’s the next step.”

“As the virologist who was part of the team who were first to isolate and share 
SARS-COV2 outside of China in January 2020, I am excited about the prospect of 
Ivermectin being used as a potential drug against COVID-19,” Leon Caly, senior 
medical scientist at the Victorian Infectious Diseases Reference Laboratory 
(VIDRL) at the Doherty Institute, said.

A vaccine for COVID-19 is likely still at least a year out, despite research 
teams across the world fast tracking work on potential vaccines. But that 
doesn’t mean we’re doomed.

“In times when we’re having a global pandemic and there isn’t an approved 
treatment, if we had a compound that was already available around the world 
then that might help people sooner,” Wagstaff said in the statement. 
“Realistically it’s going to be a while before a vaccine is broadly available.”


-----------------------------------
https://www.poison.org/articles/ivermectin-your-dogs-heartworm-medicine-173

The Full Story

Sometimes new drugs are found in unusual places. The antiparasitic drug 
ivermectin was discovered in the 1970s in bacteria isolated from the soil on a 
Japanese golf course. Ivermectin was called the first "endectocide" since it 
was active against both endoparasites (parasites that live inside the host) and 
ectoparasites (parasites that live on the outside of the host).

Ivermectin was initially developed as a veterinary antiparasitic drug. Of 
particular importance today is ivermectin's ability to prevent heartworm 
infections in dogs with monthly dosing (e.g., Heartgard). Ivermectin has also 
protected hundreds of millions of livestock from a variety of parasites.

Ivermectin lotion is approved by the FDA for the treatment of head lice. Unlike 
many other treatments for head lice, ivermectin lotion only needs to be applied 
once. When given orally, ivermectin can be used for treating head or pubic lice 
and scabies (an itchy, highly contagious skin disease caused by mites burrowing 
in the skin). Oral ivermectin is useful to control outbreaks of scabies in 
nursing homes where whole-body application of topical agents is difficult.

Ivermectin's greatest impact on human health has been in Africa. Since 1987, in 
addition to its use for other parasitic infestations, ivermectin has been used 
extensively to control onchocerciasis with 1.4 billion treatments so far. 
Onchocerciasis is also called "river blindness" because the blackfly that 
transmits the disease breeds in fast-moving streams and rivers. Once within the 
body, the adult female worm produces thousands of juvenile worms that migrate 
to the skin and eyes and can produce severe itching and eye injury that can 
lead to blindness.

Ivermectin kills the juvenile worms, but not the adult females. The 
effectiveness of the drug lasts up to 12 months, but mature female worms 
produce offspring for 15 years, so ivermectin has to be taken once a year for 
that long.

Over 300 million people take ivermectin each year. To date, ivermectin has been 
shown to be a safe and well-tolerated drug. Most adverse reactions are mild and 
temporary, such as loss of appetite, headache, muscle aches, lack of energy, 
and fever. There have been a small number of severe adverse events and even 
some deaths in humans treated with ivermectin in onchocerciasis-control 
programs. The reason for these events is unknown, but they might be linked to 
the presence of large numbers of other parasites that are killed off in treated 
patients.

If you suspect someone has swallowed ivermectin, do not make the person vomit. 
Immediately check the webPOISONCONTROL® online tool for help or call Poison 
Control at 1-800-222-1222.

When ivermectin gets in the eyes, minor irritation and redness can occur. 
Serious eye injury is not likely, but the eyes should be rinsed immediately. 
Remove contact lenses and use lots of room temperature water. For children, 
pour water onto the bridge of the nose and let it gently run into the eyes. 
Encourage blinking. After rinsing, call Poison Control or use the 
webPOISONCONTROL tool for help.

Mary Elizabeth May, RN, BA, MPH
Certified Specialist in Poison Information 






=========================================================






On Friday, April 3, 2020, 04:12:39 PM PDT, jim bell <jdb10...@yahoo.com> wrote: 

https://www.dailymail.co.uk/health/article-8184997/Doctors-worldwide-say-malaria-drug-best-coronavirus-treatment.html

Doctors around the globe report that the malaria drug hydroxychloroquine seems 
the most effective treatment they've tried for coronavirus patients - but less 
than half as many doctors are prescribing it in the US as in other hard-hit 
countries like Spain. 

A survey of 6,200 doctors around the globe reveals that while few corners of 
the world are untouched by the virus, the pandemic is being handled very 
differently from country-to-country. 

And in some measures, the US continues to fall behind other nations' responses. 

For example, an American waits an average of four to five days to get results 
back after being tested for COVID-19. Half of doctors in Europe and most in 
China get the test results back within 24-hours. 

Dr Murali Doraiswamy, an adviser to Sermo, urged that countries should take 
note of what is working for doctors and governments elsewhere and move quickly 
to adopt practices that are saving lives. 

  
Hydroxychloroquine (pictured) was deemed the most effective coronavirus 
treatment comared to other options by more doctors worldwide than any other in 
a global survey 


===========================================================
On Sat, Feb 8, 2020 at 9:18 PM jim bell <jdb10...@yahoo.com> wrote:
jim bell

[chloroquine is an old-line drug typically used against malaria]

[partial quote follows]


https://www.asbmb.org/asbmb-today/science/020620/could-an-old-malaria-drug-help-fight-the-new-coron

ASBMB Today Science Could an old malaria drug help fight the new coronavirus?

Could an old malaria drug

help fight the new coronavirus?

By John Arnst

February 06, 2020



Chloroquine might be getting new life as an antiviral treatment for the novel 
coronavirus that emerged in Wuhan, China in late 2019 and has infected some 
25,000 people in more than 25 countries. For decades, the drug was a front-line 
treatment and prophylactic for malaria.



In a three-page paper published Tuesday in Cell Research, scientists at the 
Wuhan Institute of Virology’s State Key Laboratory of Virology write that both 
chloroquine and the antiviral remdesivir were, individually, “highly effective” 
at inhibiting replication of the novel coronavirus in cell culture. Their drug 
screen evaluated five other drugs that were not effective. The authors could 
not be reached for comment.





Though the paper is brief, John Lednicky, a professor at the University of 
Florida’s Emerging Pathogens Institute, found its results intriguing. “It’s 
interesting in that it really lacks a lot of details but, nevertheless, if you 
look at the data as presented, at least in vitro, it seems like chloroquine can 
be used as an early-stage drug,” he said. “It would be very good if these types 
of experiments were repeated by more laboratories to see whether the same 
results occur across the board.”



Chloroquine is a synthetic form of quinine, a compound found in the bark of 
cinchona trees native to Peru and used for centuries to treat malaria.



Chloroquine was an essential element of mass drug administration campaigns to 
combat malaria throughout the second half of the 20th century, and remains one 
of the World Health Organization’s essential medicines. However, after the 
malaria parasites Plasmodium falciparum and Plasmodium vivax began exhibiting 
resistance to the drug in the 1960s and 1980s, respectively, it was replaced by 
similar antimalarial compounds and combination therapies. Chloroquine is still 
widely used against the three other species of plasmodium and to treat 
autoimmune disorders and some cases of amebiasis, an intestinal infection 
caused by the amoeba Entamoeba histolytica.



Chloroquine’s antiviral properties were explored in the mid-1990s against HIV 
and in the following decade against severe acute respiratory syndrome, or SARS, 
which is closely related to the novel coronavirus. In 2004, researchers in 
Belgium found that chloroquine inhibited replication of SARS in cell culture. 
The following year, however, another team at Utah State University and the 
Chinese University of Hong Kong evaluated a gamut of compounds against SARS 
replication in mice infected with the virus, finding that chloroquine was only 
effective as an anti-inflammatory agent. They recommended that it could be used 
in combination with compounds that prevent replication. Nevertheless, in 2009, 
the Belgian group found that lethal infections of human coronavirus OC43, a 
relative of SARS, could be averted in newborn mice by administering chloroquine 
through the mother’s milk.



[end of partial quote]



Also:



https://www.nature.com/articles/s41422-020-0282-0





Remdesivir and chloroquine effectively inhibit the recently emerged novel 
coronavirus (2019-nCoV) in vitro

Manli Wang, Ruiyuan Cao, Leike Zhang, Xinglou Yang, Jia Liu, Mingyue Xu, 
Zhengli Shi, Zhihong Hu, Wu Zhong & Gengfu Xiao 



Cell Research (2020)Cite this article



171k Accesses



1108 Altmetric



Metrics

details



Dear Editor,



In December 2019, a novel pneumonia caused by a previously unknown pathogen 
emerged in Wuhan, a city of 11 million people in central China. The initial 
cases were linked to exposures in a seafood market in Wuhan.1 As of January 27, 
2020, the Chinese authorities reported 2835 confirmed cases in mainland China, 
including 81 deaths. Additionally, 19 confirmed cases were identified in Hong 
Kong, Macao and Taiwan, and 39 imported cases were identified in Thailand, 
Japan, South Korea, United States, Vietnam, Singapore, Nepal, France, Australia 
and Canada. The pathogen was soon identified as a novel coronavirus 
(2019-nCoV), which is closely related to sever acute respiratory syndrome CoV 
(SARS-CoV).2 Currently, there is no specific treatment against the new virus. 
Therefore, identifying effective antiviral agents to combat the disease is 
urgently needed.



An efficient approach to drug discovery is to test whether the existing 
antiviral drugs are effective in treating related viral infections. The 
2019-nCoV belongs to Betacoronavirus which also contains SARS-CoV and Middle 
East respiratory syndrome CoV (MERS-CoV). Several drugs, such as ribavirin, 
interferon, lopinavir-ritonavir, corticosteroids, have been used in patients 
with SARS or MERS, although the efficacy of some drugs remains controversial.3 
In this study, we evaluated the antiviral efficiency of five FAD-approved drugs 
including ribavirin, penciclovir, nitazoxanide, nafamostat, chloroquine and two 
well-known broad-spectrum antiviral drugs remdesivir (GS-5734) and favipiravir 
(T-705) against a clinical isolate of 2019-nCoV in vitro.



Standard assays were carried out to measure the effects of these compounds on 
the cytotoxicity, virus yield and infection rates of 2019-nCoVs. Firstly, the 
cytotoxicity of the candidate compounds in Vero E6 cells (ATCC-1586) was 
determined by the CCK8 assay. Then, Vero E6 cells were infected with 
nCoV-2019BetaCoV/Wuhan/WIV04/20192 at a multiplicity of infection (MOI) of 0.05 
in the presence of varying concentrations of the test drugs. DMSO was used in 
the controls. Efficacies were evaluated by quantification of viral copy numbers 
in the cell supernatant via quantitative real-time RT-PCR (qRT-PCR) and 
confirmed with visualization of virus nucleoprotein (NP) expression through 
immunofluorescence microscopy at 48 h post infection (p.i.) (cytopathic effect 
was not obvious at this time point of infection). Among the seven tested drugs, 
high concentrations of three nucleoside analogs including ribavirin 
(half-maximal effective concentration (EC50) = 109.50 μM, half-cytotoxic 
concentration (CC50) > 400 μM, selectivity index (SI) > 3.65), penciclovir 
(EC50 = 95.96 μM, CC50 > 400 μM, SI > 4.17) and favipiravir (EC50 = 61.88 μM, 
CC50 > 400 μM, SI > 6.46) were required to reduce the viral infection (Fig. 1a 
and Supplementary information, Fig. S1). However, favipiravir has been shown to 
be 100% effective in protecting mice against Ebola virus challenge, although 
its EC50 value in Vero E6 cells was as high as 67 μM,4 suggesting further in 
vivo studies are recommended to evaluate this antiviral nucleoside. Nafamostat, 
a potent inhibitor of MERS-CoV, which prevents membrane fusion, was inhibitive 
against the 2019-nCoV infection (EC50 = 22.50 μM, CC50 > 100 μM, SI > 4.44). 
Nitazoxanide, a commercial antiprotozoal agent with an antiviral potential 
against a broad range of viruses including human and animal coronaviruses, 
inhibited the 2019-nCoV at a low-micromolar concentration (EC50 = 2.12 μM; CC50 
> 35.53 μM; SI > 16.76). Further in vivo evaluation of this drug against 
2019-nCoV infection is recommended. Notably, two compounds remdesivir (EC50 = 
0.77 μM; CC50 > 100 μM; SI > 129.87) and chloroquine (EC50 = 1.13 μM; CC50 > 
100 μM, SI > 88.50) potently blocked virus infection at low-micromolar 
concentration and showed high SI (Fig. 1a, b).

| 
| 
| 
|  |  |

 |

 |
| 
|  | 
Anti-parasitic drug kills coronavirus cell cultures in just 48 hours

"If we had a compound that was already available around the world then that 
might help people sooner."
 |

 |

 |



  

Reply via email to