I rewrote example 15 for a MPI-environment using Trilinos, and solve it with IndexSet solution_relevant_partitioning(dof_handler.n_dofs()); DoFTools::extract_locally_relevant_dofs(dof_handler, solution_relevant_partitioning); LinearAlgebraTrilinos::MPI::Vector completely_distributed_solution( dof_handler.locally_owned_dofs(), mpi_communicator); LinearAlgebraTrilinos::MPI::Vector completely_distributed_update( dof_handler.locally_owned_dofs(), mpi_communicator);
completely_distributed_solution = present_solution; SolverControl solver_control (dof_handler.n_dofs(), (system_rhs.l2_norm() > 0) ? 1e-6 * system_rhs.l2_norm() : 1e-6); LinearAlgebraTrilinos::SolverGMRES solver (solver_control); LinearAlgebraTrilinos::MPI::PreconditionAMG preconditioner; LinearAlgebraTrilinos::MPI::PreconditionAMG::AdditionalData data; print_status_update("Initializing system matrix with preconditioner\n"); preconditioner.initialize(system_matrix, data); print_status_update("Solving\n"); solver.solve (system_matrix, completely_distributed_update, system_rhs, preconditioner); print_status_update("Solving done\n"); hanging_node_constraints.distribute (completely_distributed_update); print_status_update("Adding to newton\n"); newton_update = completely_distributed_update; newton_update.compress(VectorOperation::insert); const double alpha = determine_step_length(); completely_distributed_solution.add (alpha, completely_distributed_update); present_solution = completely_distributed_solution; which works fine. Now, as next step I wanted to test if I could introduce an offset, i.e. the resulting surface is not located at z=0, but rather at z=OFFSET, with OFFSET a double value set at the beginning. Thus I also initialize the solution accordingly with template <int dim> class InitialValues : public Function<dim> { public: InitialValues () : Function<dim>() {} virtual double value(const Point<dim> &p, const unsigned int component) const; }; template <int dim> double InitialValues<dim>::value(const Point<dim> &p, const unsigned int component) const { return OFFSET; } //In run-function LinearAlgebraTrilinos::MPI::Vector local_solution; local_solution.reinit(dof_handler.locally_owned_dofs(), mpi_communicator); VectorTools::project (dof_handler, boundary_constraints, QGauss<dim>(fe.degree+2), InitialValues<dim>(), local_solution); //boundary_constraints.distribute(local_solution); present_solution = local_solution; Now I notice that if my offset goes above a certain level, I have to reduce the step length, else I get the error An error occurred in line <522> of file </home/roland/Downloads/dealii/ source/lac/trilinos_solver.cc> in function void dealii::TrilinosWrappers::SolverBase::do_solve(const Preconditioner &) [with Preconditioner = dealii::TrilinosWrappers::PreconditionBase] The violated condition was: false Additional information: AztecOO::Iterate error code -3: loss of precision I do not understand the reason why that happens. Is it a mathematical problem? Or rather a problem in my code? Afaik the gradients should not depend on the offset, thus I do not know where to look for the problem here. Thanks! -- The deal.II project is located at http://www.dealii.org/ For mailing list/forum options, see https://groups.google.com/d/forum/dealii?hl=en --- You received this message because you are subscribed to the Google Groups "deal.II User Group" group. To unsubscribe from this group and stop receiving emails from it, send an email to dealii+unsubscr...@googlegroups.com. For more options, visit https://groups.google.com/d/optout.