Here's To Biology: Nature's Own Nanomachines Dr. Steve Block, Biology and 
Applied Physics








Our Company offers a very competitive wage to the successful candidate, along 
with an unrivalled career progression opportunity. If you believe you have what 
it takes to take on this challenge and would like to join please send the 
following information to: [EMAIL PROTECTED]
1) Full name 2) Contact phone numbers
3) Part time job/Full time

The ideal applicant will be an intelligent individual, someone who can work autonomously with a high level of enthusiasm. We are looking for a highly motivated professional, with experience of working with people. The position is home-based. We offer a part-time position with flexible working hours. And we would be happy to consider a full-time job share applicant. A strong background in the marketing field is essential for this position, as is the ability to inspire at every level. You do not need to spend any sum of money and we do not ask you to give us with your bank account number! We are engaged in totally officially authorized activity.
If you are interested in our vacancy please feel free to contact us for further 
information. The preference is given to employees with knowledge of foreign 
languages.
Thank you and we are looking forward to cooperate in long-standing base with 
you all.













Materials: Carbon Nanotubes Dr. Hongjie Dai, Chemistry Slice a layer of pencil lead, roll it up, and you have 
a carbon nanotube: a graphene sheet (a layer of graphite) rolled up into a cylinder. "A carbon nanotube 
is a clever way of making a fully saturated nanowire structure-a 1-D structure with all its atoms fully 
bonded," explains Professor Dai, who has developed catalysts that control where carbon nanotubes grow. 
"The big challenge is controlling the synthesis. More control leads to definite physical 
properties," says Dai. In contrast to conventional semi-conductors, where "the surface atoms are 
not happily bonded," as Dai puts it, the high degree of structural perfection in nanotubes leads to 
ballistic transport of electrons, which translates into high speed electronics. Dai predicts that while it is 
doubtful that carbon nanotubes will overtake the electronics industry, it is quite possible that they will 
replace some electronics components.
"Whether nanotechnology had ever showed up or not, electronics would have gotten 
there anyway," says Professor Saraswat. For the past four decades, the number of 
transistors that can be put on a chip, or equivalently, the number of information 
processing events that can be done per chip, has doubled every twenty-two months; 
concomitantly, the cost per processing event has dropped. Following this trend called 
Moore's Law, microelectronics has steadily settled into nanoelectronics in the past 
decade.




--
To UNSUBSCRIBE, email to [EMAIL PROTECTED]
with a subject of "unsubscribe". Trouble? Contact [EMAIL PROTECTED]

Reply via email to