Hi,

On Fri, Nov 10, 2017 at 01:18:07AM +0200, Adrian Bunk wrote:
> Source: agda-stdlib
> Version: 0.13-1
> Severity: serious
> 
> Some recent change in unstable makes agda-stdlib FTBFS:
> 
> https://tests.reproducible-builds.org/debian/history/agda-stdlib.html
> https://tests.reproducible-builds.org/debian/rb-pkg/unstable/amd64/agda-stdlib.html
> 
> ...
>    debian/rules override_dh_auto_build
> make[1]: Entering directory '/build/1st/agda-stdlib-0.13'
> ghc --make GenerateEverything.hs
> [1 of 1] Compiling Main             ( GenerateEverything.hs, 
> GenerateEverything.o )
> Linking GenerateEverything ...
> ./GenerateEverything
> agda +RTS -K1G -RTS -i /build/1st/agda-stdlib-0.13 -i 
> /build/1st/agda-stdlib-0.13/src /build/1st/agda-stdlib-0.13/Everything.agda
> Checking Everything (/build/1st/agda-stdlib-0.13/Everything.agda).
>  Checking Algebra (/build/1st/agda-stdlib-0.13/src/Algebra.agda).
>   Checking Relation.Binary 
> (/build/1st/agda-stdlib-0.13/src/Relation/Binary.agda).
>    Checking Data.Product (/build/1st/agda-stdlib-0.13/src/Data/Product.agda).
>     Checking Function (/build/1st/agda-stdlib-0.13/src/Function.agda).
>      Checking Level (/build/1st/agda-stdlib-0.13/src/Level.agda).
>      Finished Level.
>     Finished Function.
>     Checking Relation.Nullary 
> (/build/1st/agda-stdlib-0.13/src/Relation/Nullary.agda).
>      Checking Data.Empty (/build/1st/agda-stdlib-0.13/src/Data/Empty.agda).
> /build/1st/agda-stdlib-0.13/src/Data/Empty.agda:13,1-31
> The HASKELL pragma has been deprecated. Use
> {-# FOREIGN GHC data AgdaEmpty #-} instead. This will be an error
> in Agda 2.6.
> when scope checking the declaration
>   {-# HASKELL
>       data AgdaEmpty
>   #-}
> /build/1st/agda-stdlib-0.13/src/Data/Empty.agda:14,1-58
> The COMPILED_DATA pragma has been deprecated. Use
> {-# COMPILE GHC /build/1st/agda-stdlib-0.13/src/Relation/Nullary.agda:11,13-23
> <stdout>: commitBuffer: invalid argument (invalid character)
> debian/rules:13: recipe for target 'override_dh_auto_build' failed
> make[1]: *** [override_dh_auto_build] Error 1

This seems to be related to
https://github.com/commercialhaskell/stack/issues/793 and setting
LC_ALL=C.UTF-8 makes the build continue, but the agda-stdlib is no
longer compatible with present agda and thus fails with a type check
error:

|  Checking Data.Nat.LCM (/<<PKGBUILDDIR>>/src/Data/Nat/LCM.agda).
| /<<PKGBUILDDIR>>/src/Data/Nat/LCM.agda:119,1-125,23
| q₁ * q₂ * d′ !=
| proj₁
| (lcm (q₁ * d′) (q₂ * d′)
|  | proj₁
|    (gcd (q₁ * d′) (q₂ * d′)
|     | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , q₂ * d′)
|       ((λ y y<x →
|           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y)
|           (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma (q₁ * d′))
|            (λ y₁ y-rec →
|               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y₁)
|               (y-rec ,
|                (λ y₂ y<x₁ y₃ →
|                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₃)
|                   ((λ y₄ y<x₂ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₄)
|                       (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma y₂)
|                        (λ y₅ y-rec₁ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , 
y₅)
|                           (y-rec₁ ,
|                            .Induction.WellFounded.Some.wfRec-builder
|                            (λ x → (y₆ : ℕ) → Bézout.Lemma x y₆)
|                            (λ x x-rec y₆ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₆)
|                               ((λ y₇ y<x₃ →
|                                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₇)
|                                   (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                                    (λ y₈ y-rec₂ →
|                                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ 
* d′) (x , y₈)
|                                       (y-rec₂ , x-rec))
|                                    y₇ (.Induction.Nat.<-well-founded′ y₆ y₇ 
y<x₃)
|                                    , x-rec))
|                                , x-rec))
|                            y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ 
y<x₁)))
|                        y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂)
|                        ,
|                        .Induction.WellFounded.Some.wfRec-builder
|                        (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅)
|                        (λ x x-rec y₅ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                           ((λ y₆ y<x₃ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₆)
|                               (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                                (λ y₇ y-rec₁ →
|                                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₇)
|                                   (y-rec₁ , x-rec))
|                                y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ y<x₃)
|                                , x-rec))
|                            , x-rec))
|                        y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁)))
|                    ,
|                    .Induction.WellFounded.Some.wfRec-builder
|                    (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄)
|                    (λ x x-rec y₄ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                       ((λ y₅ y<x₂ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                           (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                            (λ y₆ y-rec₁ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₆)
|                               (y-rec₁ , x-rec))
|                            y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂)
|                            , x-rec))
|                        , x-rec))
|                    y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁)))))
|            y (.Induction.Nat.<-well-founded′ (q₂ * d′) y y<x)
|            ,
|            (λ y₁ y<x₁ y₂ →
|               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₂)
|               ((λ y₃ y<x₂ →
|                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₃)
|                   (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y₁)
|                    (λ y₄ y-rec →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₄)
|                       (y-rec ,
|                        .Induction.WellFounded.Some.wfRec-builder
|                        (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅)
|                        (λ x x-rec y₅ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                           ((λ y₆ y<x₃ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₆)
|                               (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                                (λ y₇ y-rec₁ →
|                                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₇)
|                                   (y-rec₁ , x-rec))
|                                y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ y<x₃)
|                                , x-rec))
|                            , x-rec))
|                        y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁)))
|                    y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₂)
|                    ,
|                    .Induction.WellFounded.Some.wfRec-builder
|                    (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄)
|                    (λ x x-rec y₄ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                       ((λ y₅ y<x₃ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                           (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                            (λ y₆ y-rec →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₆)
|                               (y-rec , x-rec))
|                            y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₃)
|                            , x-rec))
|                        , x-rec))
|                    y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁)))
|                ,
|                .Induction.WellFounded.Some.wfRec-builder
|                (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃)
|                (λ x x-rec y₃ →
|                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃)
|                   ((λ y₄ y<x₂ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                       (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                        (λ y₅ y-rec →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                           (y-rec , x-rec))
|                        y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂)
|                        , x-rec))
|                    , x-rec))
|                y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁)))))
|        ,
|        (λ y y<x y₁ →
|           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₁)
|           ((λ y₂ y<x₁ →
|               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₂)
|               (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y)
|                (λ y₃ y-rec →
|                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₃)
|                   (y-rec ,
|                    .Induction.WellFounded.Some.wfRec-builder
|                    (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄)
|                    (λ x x-rec y₄ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                       ((λ y₅ y<x₂ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                           (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                            (λ y₆ y-rec₁ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₆)
|                               (y-rec₁ , x-rec))
|                            y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂)
|                            , x-rec))
|                        , x-rec))
|                    y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x)))
|                y₂ (.Induction.Nat.<-well-founded′ y₁ y₂ y<x₁)
|                ,
|                .Induction.WellFounded.Some.wfRec-builder
|                (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃)
|                (λ x x-rec y₃ →
|                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃)
|                   ((λ y₄ y<x₂ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                       (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                        (λ y₅ y-rec →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                           (y-rec , x-rec))
|                        y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂)
|                        , x-rec))
|                    , x-rec))
|                y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x)))
|            ,
|            .Induction.WellFounded.Some.wfRec-builder
|            (λ x → (y₂ : ℕ) → Bézout.Lemma x y₂)
|            (λ x x-rec y₂ →
|               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₂)
|               ((λ y₃ y<x₁ →
|                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃)
|                   (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x)
|                    (λ y₄ y-rec →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                       (y-rec , x-rec))
|                    y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₁)
|                    , x-rec))
|                , x-rec))
|            y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x)))))
|    ,
|    (gcd-gcd′
|     (proj₂
|      (gcd (q₁ * d′) (q₂ * d′)
|       | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , q₂ * d′)
|         ((λ y y<x →
|             .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y)
|             (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma (q₁ * 
d′))
|              (λ y₁ y-rec →
|                 .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y₁)
|                 (y-rec ,
|                  (λ y₂ y<x₁ y₃ →
|                     .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₃)
|                     ((λ y₄ y<x₂ →
|                         .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₄)
|                         (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma y₂)
|                          (λ y₅ y-rec₁ →
|                             .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ 
, y₅)
|                             (y-rec₁ ,
|                              .Induction.WellFounded.Some.wfRec-builder
|                              (λ x → (y₆ : ℕ) → Bézout.Lemma x y₆)
|                              (λ x x-rec y₆ →
|                                 .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) 
(x , y₆)
|                                 ((λ y₇ y<x₃ →
|                                     .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₇)
|                                     
(.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x)
|                                      (λ y₈ y-rec₂ →
|                                         .Data.Nat.GCD.Bézout.gcd (q₁ * d′) 
(q₂ * d′) (x , y₈)
|                                         (y-rec₂ , x-rec))
|                                      y₇ (.Induction.Nat.<-well-founded′ y₆ y₇ 
y<x₃)
|                                      , x-rec))
|                                  , x-rec))
|                              y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ 
y<x₁)))
|                          y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂)
|                          ,
|                          .Induction.WellFounded.Some.wfRec-builder
|                          (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅)
|                          (λ x x-rec y₅ →
|                             .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                             ((λ y₆ y<x₃ →
|                                 .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) 
(x , y₆)
|                                 (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                                  (λ y₇ y-rec₁ →
|                                     .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₇)
|                                     (y-rec₁ , x-rec))
|                                  y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ 
y<x₃)
|                                  , x-rec))
|                              , x-rec))
|                          y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ 
y<x₁)))
|                      ,
|                      .Induction.WellFounded.Some.wfRec-builder
|                      (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄)
|                      (λ x x-rec y₄ →
|                         .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                         ((λ y₅ y<x₂ →
|                             .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                             (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                              (λ y₆ y-rec₁ →
|                                 .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) 
(x , y₆)
|                                 (y-rec₁ , x-rec))
|                              y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂)
|                              , x-rec))
|                          , x-rec))
|                      y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁)))))
|              y (.Induction.Nat.<-well-founded′ (q₂ * d′) y y<x)
|              ,
|              (λ y₁ y<x₁ y₂ →
|                 .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₂)
|                 ((λ y₃ y<x₂ →
|                     .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₃)
|                     (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma 
y₁)
|                      (λ y₄ y-rec →
|                         .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₄)
|                         (y-rec ,
|                          .Induction.WellFounded.Some.wfRec-builder
|                          (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅)
|                          (λ x x-rec y₅ →
|                             .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                             ((λ y₆ y<x₃ →
|                                 .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) 
(x , y₆)
|                                 (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                                  (λ y₇ y-rec₁ →
|                                     .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₇)
|                                     (y-rec₁ , x-rec))
|                                  y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ 
y<x₃)
|                                  , x-rec))
|                              , x-rec))
|                          y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ 
y<x₁)))
|                      y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₂)
|                      ,
|                      .Induction.WellFounded.Some.wfRec-builder
|                      (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄)
|                      (λ x x-rec y₄ →
|                         .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                         ((λ y₅ y<x₃ →
|                             .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                             (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                              (λ y₆ y-rec →
|                                 .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) 
(x , y₆)
|                                 (y-rec , x-rec))
|                              y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₃)
|                              , x-rec))
|                          , x-rec))
|                      y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁)))
|                  ,
|                  .Induction.WellFounded.Some.wfRec-builder
|                  (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃)
|                  (λ x x-rec y₃ →
|                     .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃)
|                     ((λ y₄ y<x₂ →
|                         .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                         (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                          (λ y₅ y-rec →
|                             .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                             (y-rec , x-rec))
|                          y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂)
|                          , x-rec))
|                      , x-rec))
|                  y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁)))))
|          ,
|          (λ y y<x y₁ →
|             .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₁)
|             ((λ y₂ y<x₁ →
|                 .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₂)
|                 (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y)
|                  (λ y₃ y-rec →
|                     .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₃)
|                     (y-rec ,
|                      .Induction.WellFounded.Some.wfRec-builder
|                      (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄)
|                      (λ x x-rec y₄ →
|                         .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                         ((λ y₅ y<x₂ →
|                             .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                             (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                              (λ y₆ y-rec₁ →
|                                 .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) 
(x , y₆)
|                                 (y-rec₁ , x-rec))
|                              y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂)
|                              , x-rec))
|                          , x-rec))
|                      y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x)))
|                  y₂ (.Induction.Nat.<-well-founded′ y₁ y₂ y<x₁)
|                  ,
|                  .Induction.WellFounded.Some.wfRec-builder
|                  (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃)
|                  (λ x x-rec y₃ →
|                     .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃)
|                     ((λ y₄ y<x₂ →
|                         .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                         (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                          (λ y₅ y-rec →
|                             .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₅)
|                             (y-rec , x-rec))
|                          y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂)
|                          , x-rec))
|                      , x-rec))
|                  y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x)))
|              ,
|              .Induction.WellFounded.Some.wfRec-builder
|              (λ x → (y₂ : ℕ) → Bézout.Lemma x y₂)
|              (λ x x-rec y₂ →
|                 .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₂)
|                 ((λ y₃ y<x₁ →
|                     .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃)
|                     (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma 
x)
|                      (λ y₄ y-rec →
|                         .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄)
|                         (y-rec , x-rec))
|                      y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₁)
|                      , x-rec))
|                  , x-rec))
|              y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x))))))
|     | GCD.commonDivisor
|       (proj₂
|        (gcd (q₁ * d′) (q₂ * d′)
|         | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , q₂ * d′)
|           ((λ y y<x →
|               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y)
|               (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma (q₁ * 
d′))
|                (λ y₁ y-rec →
|                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y₁)
|                   (y-rec ,
|                    (λ y₂ y<x₁ y₃ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₃)
|                       ((λ y₄ y<x₂ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , 
y₄)
|                           (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma y₂)
|                            (λ y₅ y-rec₁ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) 
(y₂ , y₅)
|                               (y-rec₁ ,
|                                .Induction.WellFounded.Some.wfRec-builder
|                                (λ x → (y₆ : ℕ) → Bézout.Lemma x y₆)
|                                (λ x x-rec y₆ →
|                                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₆)
|                                   ((λ y₇ y<x₃ →
|                                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ 
* d′) (x , y₇)
|                                       
(.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x)
|                                        (λ y₈ y-rec₂ →
|                                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) 
(q₂ * d′) (x , y₈)
|                                           (y-rec₂ , x-rec))
|                                        y₇ (.Induction.Nat.<-well-founded′ y₆ 
y₇ y<x₃)
|                                        , x-rec))
|                                    , x-rec))
|                                y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) 
y₂ y<x₁)))
|                            y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂)
|                            ,
|                            .Induction.WellFounded.Some.wfRec-builder
|                            (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅)
|                            (λ x x-rec y₅ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₅)
|                               ((λ y₆ y<x₃ →
|                                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₆)
|                                   (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                                    (λ y₇ y-rec₁ →
|                                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ 
* d′) (x , y₇)
|                                       (y-rec₁ , x-rec))
|                                    y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ 
y<x₃)
|                                    , x-rec))
|                                , x-rec))
|                            y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ 
y<x₁)))
|                        ,
|                        .Induction.WellFounded.Some.wfRec-builder
|                        (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄)
|                        (λ x x-rec y₄ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₄)
|                           ((λ y₅ y<x₂ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₅)
|                               (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                                (λ y₆ y-rec₁ →
|                                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₆)
|                                   (y-rec₁ , x-rec))
|                                y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂)
|                                , x-rec))
|                            , x-rec))
|                        y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ 
y<x₁)))))
|                y (.Induction.Nat.<-well-founded′ (q₂ * d′) y y<x)
|                ,
|                (λ y₁ y<x₁ y₂ →
|                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₂)
|                   ((λ y₃ y<x₂ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₃)
|                       (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma y₁)
|                        (λ y₄ y-rec →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , 
y₄)
|                           (y-rec ,
|                            .Induction.WellFounded.Some.wfRec-builder
|                            (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅)
|                            (λ x x-rec y₅ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₅)
|                               ((λ y₆ y<x₃ →
|                                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₆)
|                                   (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                                    (λ y₇ y-rec₁ →
|                                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ 
* d′) (x , y₇)
|                                       (y-rec₁ , x-rec))
|                                    y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ 
y<x₃)
|                                    , x-rec))
|                                , x-rec))
|                            y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ 
y<x₁)))
|                        y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₂)
|                        ,
|                        .Induction.WellFounded.Some.wfRec-builder
|                        (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄)
|                        (λ x x-rec y₄ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₄)
|                           ((λ y₅ y<x₃ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₅)
|                               (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                                (λ y₆ y-rec →
|                                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₆)
|                                   (y-rec , x-rec))
|                                y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₃)
|                                , x-rec))
|                            , x-rec))
|                        y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁)))
|                    ,
|                    .Induction.WellFounded.Some.wfRec-builder
|                    (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃)
|                    (λ x x-rec y₃ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃)
|                       ((λ y₄ y<x₂ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₄)
|                           (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                            (λ y₅ y-rec →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₅)
|                               (y-rec , x-rec))
|                            y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂)
|                            , x-rec))
|                        , x-rec))
|                    y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁)))))
|            ,
|            (λ y y<x y₁ →
|               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₁)
|               ((λ y₂ y<x₁ →
|                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₂)
|                   (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y)
|                    (λ y₃ y-rec →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₃)
|                       (y-rec ,
|                        .Induction.WellFounded.Some.wfRec-builder
|                        (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄)
|                        (λ x x-rec y₄ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₄)
|                           ((λ y₅ y<x₂ →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₅)
|                               (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                                (λ y₆ y-rec₁ →
|                                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * 
d′) (x , y₆)
|                                   (y-rec₁ , x-rec))
|                                y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂)
|                                , x-rec))
|                            , x-rec))
|                        y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x)))
|                    y₂ (.Induction.Nat.<-well-founded′ y₁ y₂ y<x₁)
|                    ,
|                    .Induction.WellFounded.Some.wfRec-builder
|                    (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃)
|                    (λ x x-rec y₃ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃)
|                       ((λ y₄ y<x₂ →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₄)
|                           (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                            (λ y₅ y-rec →
|                               .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x 
, y₅)
|                               (y-rec , x-rec))
|                            y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂)
|                            , x-rec))
|                        , x-rec))
|                    y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x)))
|                ,
|                .Induction.WellFounded.Some.wfRec-builder
|                (λ x → (y₂ : ℕ) → Bézout.Lemma x y₂)
|                (λ x x-rec y₂ →
|                   .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₂)
|                   ((λ y₃ y<x₁ →
|                       .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃)
|                       (.Induction.WellFounded.Some.wfRec-builder 
(Bézout.Lemma x)
|                        (λ y₄ y-rec →
|                           .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , 
y₄)
|                           (y-rec , x-rec))
|                        y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₁)
|                        , x-rec))
|                    , x-rec))
|                y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x))))))))
| of type ℕ
| when checking that the clause
| .Data.Nat.LCM.with-344 {.(q₁ * d′)} {.(q₂ * d′)}
|   (d′ , gcd-* q₁ q₂ q₁-q₂-coprime)
|   l
|   {d}
|   g
|   with GCD.unique g (gcd′-gcd (gcd-* q₁ q₂ q₁-q₂-coprime))
| .Data.Nat.LCM.with-344 {.(q₁ * d)} {.(q₂ * d)}
|   (.d , gcd-* q₁ q₂ q₁-q₂-coprime)
|   l
|   {d}
|   g
|   | refl
|   = solve 3
|     (λ q₁ q₂ d → q₁ :* d :* (q₂ :* d) := d :* (q₁ :* q₂ :* d)) refl q₁
|     q₂ d
| has type
| {i j : ℕ} (w : Σ ℕ (GCD′ i j)) (l : LCM i j (proj₁ (lcm i j | w)))
| {d : ℕ} (g : GCD i j d) →
| i * j ≡ d * proj₁ (lcm i j | w)
| debian/rules:15: recipe for target 'override_dh_auto_build' failed
| make[1]: *** [override_dh_auto_build] Error 1
| make[1]: Leaving directory '/<<PKGBUILDDIR>>'
| debian/rules:29: recipe for target 'build' failed
| make: *** [build] Error 2
| dpkg-buildpackage: error: debian/rules build subprocess returned exit status 2

I guess we'll need a new upstream release here.

I'm attaching the patch I have, but it doesn't make it build.

Helmut
diff --minimal -Nru agda-stdlib-0.13/debian/changelog 
agda-stdlib-0.13/debian/changelog
--- agda-stdlib-0.13/debian/changelog   2017-07-06 11:16:33.000000000 +0200
+++ agda-stdlib-0.13/debian/changelog   2017-11-17 15:14:14.000000000 +0100
@@ -1,3 +1,12 @@
+agda-stdlib (0.13-2) UNRELEASED; urgency=medium
+
+  * Team upload.
+  * Address FTBFS: export LC_ALL=C.UTF-8. (Addresses: #881307)
+  * Bump agda-bin Breaks due to agdai incompatibility.
+  * Tighten up agda relation ships to detect incompatibility next time.
+
+ -- Helmut Grohne <hel...@subdivi.de>  Fri, 17 Nov 2017 15:14:14 +0100
+
 agda-stdlib (0.13-1) unstable; urgency=medium
 
   [ Gianfranco Costamagna ]
diff --minimal -Nru agda-stdlib-0.13/debian/control 
agda-stdlib-0.13/debian/control
--- agda-stdlib-0.13/debian/control     2017-07-06 11:16:33.000000000 +0200
+++ agda-stdlib-0.13/debian/control     2017-11-17 15:14:14.000000000 +0100
@@ -4,10 +4,10 @@
 Maintainer: Iain Lane <la...@debian.org>
 Uploaders: Debian Haskell Group 
<pkg-haskell-maintain...@lists.alioth.debian.org>
 Build-Depends: debhelper (>= 10),
-               agda-bin (>= 2.5.1),
-               agda-bin (<< 2.6.0),
-               libghc-agda-dev (>= 2.5.1),
-               libghc-agda-dev (<< 2.6.0),
+               agda-bin (>= 2.5.3),
+               agda-bin (<< 2.5.4~),
+               libghc-agda-dev (>= 2.5.3),
+               libghc-agda-dev (<< 2.5.4~),
                libghc-filemanip-dev
 Standards-Version: 4.0.0
 Vcs-Browser: https://anonscm.debian.org/cgit/collab-maint/agda-stdlib.git
@@ -17,9 +17,9 @@
 Package: agda-stdlib
 Architecture: all
 Depends: ${misc:Depends},
-         libghc-agda-dev (>= 2.5.1),
-         libghc-agda-dev (<< 2.6.0)
-Breaks: agda-bin (<< 2.5.1)
+         libghc-agda-dev (>= 2.5.3),
+         libghc-agda-dev (<< 2.5.4~)
+Breaks: agda-bin (<< 2.5.3)
 Enhances: elpa-agda2-mode
 Description: standard library for Agda
  Agda is a dependently typed functional programming language: It has inductive
diff --minimal -Nru agda-stdlib-0.13/debian/rules agda-stdlib-0.13/debian/rules
--- agda-stdlib-0.13/debian/rules       2017-07-06 11:16:33.000000000 +0200
+++ agda-stdlib-0.13/debian/rules       2017-11-17 15:14:14.000000000 +0100
@@ -1,5 +1,7 @@
 #!/usr/bin/make -f
 
+export LC_ALL=C.UTF-8
+
 override_dh_auto_clean:
        find $(CURDIR) -name "*.agdai" -delete
        rm -rf $(CURDIR)/html

Reply via email to