Hi, On Fri, Nov 10, 2017 at 01:18:07AM +0200, Adrian Bunk wrote: > Source: agda-stdlib > Version: 0.13-1 > Severity: serious > > Some recent change in unstable makes agda-stdlib FTBFS: > > https://tests.reproducible-builds.org/debian/history/agda-stdlib.html > https://tests.reproducible-builds.org/debian/rb-pkg/unstable/amd64/agda-stdlib.html > > ... > debian/rules override_dh_auto_build > make[1]: Entering directory '/build/1st/agda-stdlib-0.13' > ghc --make GenerateEverything.hs > [1 of 1] Compiling Main ( GenerateEverything.hs, > GenerateEverything.o ) > Linking GenerateEverything ... > ./GenerateEverything > agda +RTS -K1G -RTS -i /build/1st/agda-stdlib-0.13 -i > /build/1st/agda-stdlib-0.13/src /build/1st/agda-stdlib-0.13/Everything.agda > Checking Everything (/build/1st/agda-stdlib-0.13/Everything.agda). > Checking Algebra (/build/1st/agda-stdlib-0.13/src/Algebra.agda). > Checking Relation.Binary > (/build/1st/agda-stdlib-0.13/src/Relation/Binary.agda). > Checking Data.Product (/build/1st/agda-stdlib-0.13/src/Data/Product.agda). > Checking Function (/build/1st/agda-stdlib-0.13/src/Function.agda). > Checking Level (/build/1st/agda-stdlib-0.13/src/Level.agda). > Finished Level. > Finished Function. > Checking Relation.Nullary > (/build/1st/agda-stdlib-0.13/src/Relation/Nullary.agda). > Checking Data.Empty (/build/1st/agda-stdlib-0.13/src/Data/Empty.agda). > /build/1st/agda-stdlib-0.13/src/Data/Empty.agda:13,1-31 > The HASKELL pragma has been deprecated. Use > {-# FOREIGN GHC data AgdaEmpty #-} instead. This will be an error > in Agda 2.6. > when scope checking the declaration > {-# HASKELL > data AgdaEmpty > #-} > /build/1st/agda-stdlib-0.13/src/Data/Empty.agda:14,1-58 > The COMPILED_DATA pragma has been deprecated. Use > {-# COMPILE GHC /build/1st/agda-stdlib-0.13/src/Relation/Nullary.agda:11,13-23 > <stdout>: commitBuffer: invalid argument (invalid character) > debian/rules:13: recipe for target 'override_dh_auto_build' failed > make[1]: *** [override_dh_auto_build] Error 1
This seems to be related to https://github.com/commercialhaskell/stack/issues/793 and setting LC_ALL=C.UTF-8 makes the build continue, but the agda-stdlib is no longer compatible with present agda and thus fails with a type check error: | Checking Data.Nat.LCM (/<<PKGBUILDDIR>>/src/Data/Nat/LCM.agda). | /<<PKGBUILDDIR>>/src/Data/Nat/LCM.agda:119,1-125,23 | q₁ * q₂ * d′ != | proj₁ | (lcm (q₁ * d′) (q₂ * d′) | | proj₁ | (gcd (q₁ * d′) (q₂ * d′) | | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , q₂ * d′) | ((λ y y<x → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma (q₁ * d′)) | (λ y₁ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y₁) | (y-rec , | (λ y₂ y<x₁ y₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₃) | ((λ y₄ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₄) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y₂) | (λ y₅ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₅) | (y-rec₁ , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₆ : ℕ) → Bézout.Lemma x y₆) | (λ x x-rec y₆ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | ((λ y₇ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₇) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₈ y-rec₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₈) | (y-rec₂ , x-rec)) | y₇ (.Induction.Nat.<-well-founded′ y₆ y₇ y<x₃) | , x-rec)) | , x-rec)) | y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁))) | y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅) | (λ x x-rec y₅ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | ((λ y₆ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₇ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₇) | (y-rec₁ , x-rec)) | y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ y<x₃) | , x-rec)) | , x-rec)) | y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁))) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄) | (λ x x-rec y₄ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | ((λ y₅ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₆ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (y-rec₁ , x-rec)) | y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂) | , x-rec)) | , x-rec)) | y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁))))) | y (.Induction.Nat.<-well-founded′ (q₂ * d′) y y<x) | , | (λ y₁ y<x₁ y₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₂) | ((λ y₃ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₃) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y₁) | (λ y₄ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₄) | (y-rec , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅) | (λ x x-rec y₅ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | ((λ y₆ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₇ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₇) | (y-rec₁ , x-rec)) | y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ y<x₃) | , x-rec)) | , x-rec)) | y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁))) | y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₂) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄) | (λ x x-rec y₄ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | ((λ y₅ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₆ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (y-rec , x-rec)) | y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₃) | , x-rec)) | , x-rec)) | y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁))) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃) | (λ x x-rec y₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃) | ((λ y₄ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₅ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (y-rec , x-rec)) | y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂) | , x-rec)) | , x-rec)) | y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁))))) | , | (λ y y<x y₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₁) | ((λ y₂ y<x₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₂) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y) | (λ y₃ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₃) | (y-rec , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄) | (λ x x-rec y₄ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | ((λ y₅ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₆ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (y-rec₁ , x-rec)) | y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂) | , x-rec)) | , x-rec)) | y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x))) | y₂ (.Induction.Nat.<-well-founded′ y₁ y₂ y<x₁) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃) | (λ x x-rec y₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃) | ((λ y₄ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₅ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (y-rec , x-rec)) | y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂) | , x-rec)) | , x-rec)) | y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x))) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₂ : ℕ) → Bézout.Lemma x y₂) | (λ x x-rec y₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₂) | ((λ y₃ y<x₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₄ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | (y-rec , x-rec)) | y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₁) | , x-rec)) | , x-rec)) | y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x))))) | , | (gcd-gcd′ | (proj₂ | (gcd (q₁ * d′) (q₂ * d′) | | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , q₂ * d′) | ((λ y y<x → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma (q₁ * d′)) | (λ y₁ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y₁) | (y-rec , | (λ y₂ y<x₁ y₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₃) | ((λ y₄ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₄) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y₂) | (λ y₅ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₅) | (y-rec₁ , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₆ : ℕ) → Bézout.Lemma x y₆) | (λ x x-rec y₆ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | ((λ y₇ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₇) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₈ y-rec₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₈) | (y-rec₂ , x-rec)) | y₇ (.Induction.Nat.<-well-founded′ y₆ y₇ y<x₃) | , x-rec)) | , x-rec)) | y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁))) | y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅) | (λ x x-rec y₅ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | ((λ y₆ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₇ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₇) | (y-rec₁ , x-rec)) | y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ y<x₃) | , x-rec)) | , x-rec)) | y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁))) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄) | (λ x x-rec y₄ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | ((λ y₅ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₆ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (y-rec₁ , x-rec)) | y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂) | , x-rec)) | , x-rec)) | y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁))))) | y (.Induction.Nat.<-well-founded′ (q₂ * d′) y y<x) | , | (λ y₁ y<x₁ y₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₂) | ((λ y₃ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₃) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y₁) | (λ y₄ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₄) | (y-rec , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅) | (λ x x-rec y₅ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | ((λ y₆ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₇ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₇) | (y-rec₁ , x-rec)) | y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ y<x₃) | , x-rec)) | , x-rec)) | y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁))) | y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₂) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄) | (λ x x-rec y₄ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | ((λ y₅ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₆ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (y-rec , x-rec)) | y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₃) | , x-rec)) | , x-rec)) | y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁))) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃) | (λ x x-rec y₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃) | ((λ y₄ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₅ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (y-rec , x-rec)) | y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂) | , x-rec)) | , x-rec)) | y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁))))) | , | (λ y y<x y₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₁) | ((λ y₂ y<x₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₂) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y) | (λ y₃ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₃) | (y-rec , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄) | (λ x x-rec y₄ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | ((λ y₅ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₆ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (y-rec₁ , x-rec)) | y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂) | , x-rec)) | , x-rec)) | y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x))) | y₂ (.Induction.Nat.<-well-founded′ y₁ y₂ y<x₁) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃) | (λ x x-rec y₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃) | ((λ y₄ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₅ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (y-rec , x-rec)) | y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂) | , x-rec)) | , x-rec)) | y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x))) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₂ : ℕ) → Bézout.Lemma x y₂) | (λ x x-rec y₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₂) | ((λ y₃ y<x₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₄ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | (y-rec , x-rec)) | y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₁) | , x-rec)) | , x-rec)) | y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x)))))) | | GCD.commonDivisor | (proj₂ | (gcd (q₁ * d′) (q₂ * d′) | | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , q₂ * d′) | ((λ y y<x → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma (q₁ * d′)) | (λ y₁ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (q₁ * d′ , y₁) | (y-rec , | (λ y₂ y<x₁ y₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₃) | ((λ y₄ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₄) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y₂) | (λ y₅ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₂ , y₅) | (y-rec₁ , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₆ : ℕ) → Bézout.Lemma x y₆) | (λ x x-rec y₆ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | ((λ y₇ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₇) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₈ y-rec₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₈) | (y-rec₂ , x-rec)) | y₇ (.Induction.Nat.<-well-founded′ y₆ y₇ y<x₃) | , x-rec)) | , x-rec)) | y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁))) | y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅) | (λ x x-rec y₅ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | ((λ y₆ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₇ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₇) | (y-rec₁ , x-rec)) | y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ y<x₃) | , x-rec)) | , x-rec)) | y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁))) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄) | (λ x x-rec y₄ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | ((λ y₅ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₆ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (y-rec₁ , x-rec)) | y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂) | , x-rec)) | , x-rec)) | y₂ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₂ y<x₁))))) | y (.Induction.Nat.<-well-founded′ (q₂ * d′) y y<x) | , | (λ y₁ y<x₁ y₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₂) | ((λ y₃ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₃) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y₁) | (λ y₄ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y₁ , y₄) | (y-rec , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₅ : ℕ) → Bézout.Lemma x y₅) | (λ x x-rec y₅ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | ((λ y₆ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₇ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₇) | (y-rec₁ , x-rec)) | y₆ (.Induction.Nat.<-well-founded′ y₅ y₆ y<x₃) | , x-rec)) | , x-rec)) | y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁))) | y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₂) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄) | (λ x x-rec y₄ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | ((λ y₅ y<x₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₆ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (y-rec , x-rec)) | y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₃) | , x-rec)) | , x-rec)) | y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁))) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃) | (λ x x-rec y₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃) | ((λ y₄ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₅ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (y-rec , x-rec)) | y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂) | , x-rec)) | , x-rec)) | y₁ (.Induction.Nat.<-well-founded′ (q₁ * d′) y₁ y<x₁))))) | , | (λ y y<x y₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₁) | ((λ y₂ y<x₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₂) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma y) | (λ y₃ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (y , y₃) | (y-rec , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₄ : ℕ) → Bézout.Lemma x y₄) | (λ x x-rec y₄ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | ((λ y₅ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₆ y-rec₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₆) | (y-rec₁ , x-rec)) | y₅ (.Induction.Nat.<-well-founded′ y₄ y₅ y<x₂) | , x-rec)) | , x-rec)) | y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x))) | y₂ (.Induction.Nat.<-well-founded′ y₁ y₂ y<x₁) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₃ : ℕ) → Bézout.Lemma x y₃) | (λ x x-rec y₃ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃) | ((λ y₄ y<x₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₅ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₅) | (y-rec , x-rec)) | y₄ (.Induction.Nat.<-well-founded′ y₃ y₄ y<x₂) | , x-rec)) | , x-rec)) | y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x))) | , | .Induction.WellFounded.Some.wfRec-builder | (λ x → (y₂ : ℕ) → Bézout.Lemma x y₂) | (λ x x-rec y₂ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₂) | ((λ y₃ y<x₁ → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₃) | (.Induction.WellFounded.Some.wfRec-builder (Bézout.Lemma x) | (λ y₄ y-rec → | .Data.Nat.GCD.Bézout.gcd (q₁ * d′) (q₂ * d′) (x , y₄) | (y-rec , x-rec)) | y₃ (.Induction.Nat.<-well-founded′ y₂ y₃ y<x₁) | , x-rec)) | , x-rec)) | y (.Induction.Nat.<-well-founded′ (q₁ * d′) y y<x)))))))) | of type ℕ | when checking that the clause | .Data.Nat.LCM.with-344 {.(q₁ * d′)} {.(q₂ * d′)} | (d′ , gcd-* q₁ q₂ q₁-q₂-coprime) | l | {d} | g | with GCD.unique g (gcd′-gcd (gcd-* q₁ q₂ q₁-q₂-coprime)) | .Data.Nat.LCM.with-344 {.(q₁ * d)} {.(q₂ * d)} | (.d , gcd-* q₁ q₂ q₁-q₂-coprime) | l | {d} | g | | refl | = solve 3 | (λ q₁ q₂ d → q₁ :* d :* (q₂ :* d) := d :* (q₁ :* q₂ :* d)) refl q₁ | q₂ d | has type | {i j : ℕ} (w : Σ ℕ (GCD′ i j)) (l : LCM i j (proj₁ (lcm i j | w))) | {d : ℕ} (g : GCD i j d) → | i * j ≡ d * proj₁ (lcm i j | w) | debian/rules:15: recipe for target 'override_dh_auto_build' failed | make[1]: *** [override_dh_auto_build] Error 1 | make[1]: Leaving directory '/<<PKGBUILDDIR>>' | debian/rules:29: recipe for target 'build' failed | make: *** [build] Error 2 | dpkg-buildpackage: error: debian/rules build subprocess returned exit status 2 I guess we'll need a new upstream release here. I'm attaching the patch I have, but it doesn't make it build. Helmut
diff --minimal -Nru agda-stdlib-0.13/debian/changelog agda-stdlib-0.13/debian/changelog --- agda-stdlib-0.13/debian/changelog 2017-07-06 11:16:33.000000000 +0200 +++ agda-stdlib-0.13/debian/changelog 2017-11-17 15:14:14.000000000 +0100 @@ -1,3 +1,12 @@ +agda-stdlib (0.13-2) UNRELEASED; urgency=medium + + * Team upload. + * Address FTBFS: export LC_ALL=C.UTF-8. (Addresses: #881307) + * Bump agda-bin Breaks due to agdai incompatibility. + * Tighten up agda relation ships to detect incompatibility next time. + + -- Helmut Grohne <hel...@subdivi.de> Fri, 17 Nov 2017 15:14:14 +0100 + agda-stdlib (0.13-1) unstable; urgency=medium [ Gianfranco Costamagna ] diff --minimal -Nru agda-stdlib-0.13/debian/control agda-stdlib-0.13/debian/control --- agda-stdlib-0.13/debian/control 2017-07-06 11:16:33.000000000 +0200 +++ agda-stdlib-0.13/debian/control 2017-11-17 15:14:14.000000000 +0100 @@ -4,10 +4,10 @@ Maintainer: Iain Lane <la...@debian.org> Uploaders: Debian Haskell Group <pkg-haskell-maintain...@lists.alioth.debian.org> Build-Depends: debhelper (>= 10), - agda-bin (>= 2.5.1), - agda-bin (<< 2.6.0), - libghc-agda-dev (>= 2.5.1), - libghc-agda-dev (<< 2.6.0), + agda-bin (>= 2.5.3), + agda-bin (<< 2.5.4~), + libghc-agda-dev (>= 2.5.3), + libghc-agda-dev (<< 2.5.4~), libghc-filemanip-dev Standards-Version: 4.0.0 Vcs-Browser: https://anonscm.debian.org/cgit/collab-maint/agda-stdlib.git @@ -17,9 +17,9 @@ Package: agda-stdlib Architecture: all Depends: ${misc:Depends}, - libghc-agda-dev (>= 2.5.1), - libghc-agda-dev (<< 2.6.0) -Breaks: agda-bin (<< 2.5.1) + libghc-agda-dev (>= 2.5.3), + libghc-agda-dev (<< 2.5.4~) +Breaks: agda-bin (<< 2.5.3) Enhances: elpa-agda2-mode Description: standard library for Agda Agda is a dependently typed functional programming language: It has inductive diff --minimal -Nru agda-stdlib-0.13/debian/rules agda-stdlib-0.13/debian/rules --- agda-stdlib-0.13/debian/rules 2017-07-06 11:16:33.000000000 +0200 +++ agda-stdlib-0.13/debian/rules 2017-11-17 15:14:14.000000000 +0100 @@ -1,5 +1,7 @@ #!/usr/bin/make -f +export LC_ALL=C.UTF-8 + override_dh_auto_clean: find $(CURDIR) -name "*.agdai" -delete rm -rf $(CURDIR)/html