Source: pytorch Version: 1.8.1-2 X-Debbugs-CC: debian...@lists.debian.org Severity: serious User: debian...@lists.debian.org Usertags: regression
Dear maintainer(s), With a recent upload of pytorch the autopkgtest of pytorch fails in testing when that autopkgtest is run with the binary packages of pytorch from unstable. It passes when run with only packages from testing. In tabular form: pass fail pytorch from testing 1.8.1-2 versioned deps [0] from testing from unstable all others from testing from testing I copied some of the output at the bottom of this report. Currently this regression is blocking the migration to testing [1]. Can you please investigate the situation and fix it? More information about this bug and the reason for filing it can be found on https://wiki.debian.org/ContinuousIntegration/RegressionEmailInformation Paul [0] You can see what packages were added from the second line of the log file quoted below. The migration software adds source package from unstable to the list if they are needed to install packages from pytorch/1.8.1-2. I.e. due to versioned dependencies or breaks/conflicts. [1] https://qa.debian.org/excuses.php?package=pytorch https://ci.debian.net/data/autopkgtest/testing/amd64/p/pytorch/15624807/log.gz =================================== FAILURES =================================== __________________ TestFFTCPU.test_stft_requires_complex_cpu ___________________ self = <test_spectral_ops.TestFFTCPU testMethod=test_stft_requires_complex_cpu> device = 'cpu' def test_stft_requires_complex(self, device): x = torch.rand(100) > y = x.stft(10, pad_mode='constant') test_spectral_ops.py:939: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/lib/python3/dist-packages/torch/tensor.py:453: in stft return torch.stft(self, n_fft, hop_length, win_length, window, center, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ input = tensor([0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0290, 0.4019, 0.2598, 0.3666, 0.0583, 0.7006, 0.0518, 0.4681....0910, 0.2323, 0.7269, 0.1187, 0.3951, 0.7199, 0.7595, 0.5311, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]) n_fft = 10, hop_length = None, win_length = None, window = None, center = True pad_mode = 'constant', normalized = False, onesided = None return_complex = None def stft(input: Tensor, n_fft: int, hop_length: Optional[int] = None, win_length: Optional[int] = None, window: Optional[Tensor] = None, center: bool = True, pad_mode: str = 'reflect', normalized: bool = False, onesided: Optional[bool] = None, return_complex: Optional[bool] = None) -> Tensor: r"""Short-time Fourier transform (STFT). .. warning:: From version 1.8.0, :attr:`return_complex` must always be given explicitly for real inputs and `return_complex=False` has been deprecated. Strongly prefer `return_complex=True` as in a future pytorch release, this function will only return complex tensors. Note that :func:`torch.view_as_real` can be used to recover a real tensor with an extra last dimension for real and imaginary components. The STFT computes the Fourier transform of short overlapping windows of the input. This giving frequency components of the signal as they change over time. The interface of this function is modeled after the librosa_ stft function. .. _librosa: https://librosa.org/doc/latest/generated/librosa.stft.html Ignoring the optional batch dimension, this method computes the following expression: .. math:: X[m, \omega] = \sum_{k = 0}^{\text{win\_length-1}}% \text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ % \exp\left(- j \frac{2 \pi \cdot \omega k}{\text{win\_length}}\right), where :math:`m` is the index of the sliding window, and :math:`\omega` is the frequency that :math:`0 \leq \omega < \text{n\_fft}`. When :attr:`onesided` is the default value ``True``, * :attr:`input` must be either a 1-D time sequence or a 2-D batch of time sequences. * If :attr:`hop_length` is ``None`` (default), it is treated as equal to ``floor(n_fft / 4)``. * If :attr:`win_length` is ``None`` (default), it is treated as equal to :attr:`n_fft`. * :attr:`window` can be a 1-D tensor of size :attr:`win_length`, e.g., from :meth:`torch.hann_window`. If :attr:`window` is ``None`` (default), it is treated as if having :math:`1` everywhere in the window. If :math:`\text{win\_length} < \text{n\_fft}`, :attr:`window` will be padded on both sides to length :attr:`n_fft` before being applied. * If :attr:`center` is ``True`` (default), :attr:`input` will be padded on both sides so that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. Otherwise, the :math:`t`-th frame begins at time :math:`t \times \text{hop\_length}`. * :attr:`pad_mode` determines the padding method used on :attr:`input` when :attr:`center` is ``True``. See :meth:`torch.nn.functional.pad` for all available options. Default is ``"reflect"``. * If :attr:`onesided` is ``True`` (default for real input), only values for :math:`\omega` in :math:`\left[0, 1, 2, \dots, \left\lfloor \frac{\text{n\_fft}}{2} \right\rfloor + 1\right]` are returned because the real-to-complex Fourier transform satisfies the conjugate symmetry, i.e., :math:`X[m, \omega] = X[m, \text{n\_fft} - \omega]^*`. Note if the input or window tensors are complex, then :attr:`onesided` output is not possible. * If :attr:`normalized` is ``True`` (default is ``False``), the function returns the normalized STFT results, i.e., multiplied by :math:`(\text{frame\_length})^{-0.5}`. * If :attr:`return_complex` is ``True`` (default if input is complex), the return is a ``input.dim() + 1`` dimensional complex tensor. If ``False``, the output is a ``input.dim() + 2`` dimensional real tensor where the last dimension represents the real and imaginary components. Returns either a complex tensor of size :math:`(* \times N \times T)` if :attr:`return_complex` is true, or a real tensor of size :math:`(* \times N \times T \times 2)`. Where :math:`*` is the optional batch size of :attr:`input`, :math:`N` is the number of frequencies where STFT is applied and :math:`T` is the total number of frames used. .. warning:: This function changed signature at version 0.4.1. Calling with the previous signature may cause error or return incorrect result. Args: input (Tensor): the input tensor n_fft (int): size of Fourier transform hop_length (int, optional): the distance between neighboring sliding window frames. Default: ``None`` (treated as equal to ``floor(n_fft / 4)``) win_length (int, optional): the size of window frame and STFT filter. Default: ``None`` (treated as equal to :attr:`n_fft`) window (Tensor, optional): the optional window function. Default: ``None`` (treated as window of all :math:`1` s) center (bool, optional): whether to pad :attr:`input` on both sides so that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. Default: ``True`` pad_mode (string, optional): controls the padding method used when :attr:`center` is ``True``. Default: ``"reflect"`` normalized (bool, optional): controls whether to return the normalized STFT results Default: ``False`` onesided (bool, optional): controls whether to return half of results to avoid redundancy for real inputs. Default: ``True`` for real :attr:`input` and :attr:`window`, ``False`` otherwise. return_complex (bool, optional): whether to return a complex tensor, or a real tensor with an extra last dimension for the real and imaginary components. Returns: Tensor: A tensor containing the STFT result with shape described above """ if has_torch_function_unary(input): return handle_torch_function( stft, (input,), input, n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode, normalized=normalized, onesided=onesided, return_complex=return_complex) # TODO: after having proper ways to map Python strings to ATen Enum, move # this and F.pad to ATen. if center: signal_dim = input.dim() extended_shape = [1] * (3 - signal_dim) + list(input.size()) pad = int(n_fft // 2) input = F.pad(input.view(extended_shape), [pad, pad], pad_mode) input = input.view(input.shape[-signal_dim:]) > return _VF.stft(input, n_fft, hop_length, win_length, window, # type: > ignore normalized, onesided, return_complex) E RuntimeError: fft: ATen not compiled with MKL support /usr/lib/python3/dist-packages/torch/functional.py:580: RuntimeError
OpenPGP_signature
Description: OpenPGP digital signature