[
https://issues.apache.org/jira/browse/DERBY-2991?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Mike Matrigali updated DERBY-2991:
----------------------------------
I believe we should go forward with this change in the trunk. I also am ok
with the tested
performance trade off's. I don't think we should backport a change of this
magnitude, I think
it is appropriate for a new feature release, hopefully 10.5. I especially like
that after this change
the code is simpler, the scan locking stuff was complicated and it is great
that it can be removed
with performance sometimes increased and mostly not too affected.
Once the change goes in there may be more work possible to improve performance,
but I think
it is fine to get the basic stuff in now. One thing that comes to mind is to
change the default group
fetch size from a fixed size to a page worth. That had always been a future
direction and I think the
interfaces are there (ie. allow store to set the size of the fetch, and passing
variable size groups back
to caller). This seems even more important as once the latch is given up
repositioning costs may
be higher than before.
Knut, I would be happy to review the entire package one more time, but would
rather wait until you do
the cleanup you mention. Just post a comment when you are ready.
> Index split deadlock
> --------------------
>
> Key: DERBY-2991
> URL: https://issues.apache.org/jira/browse/DERBY-2991
> Project: Derby
> Issue Type: Bug
> Components: Store
> Affects Versions: 10.2.2.0, 10.3.1.4
> Environment: Windows XP, Java 6
> Reporter: Bogdan Calmac
> Assignee: Knut Anders Hatlen
> Attachments: d2991-preview-1a.diff, d2991-preview-1a.stat,
> d2991-preview-1b.diff, d2991-preview-1b.stat, d2991-preview-1c.diff,
> d2991-preview-1c.stat, d2991-preview-1d.diff, d2991-preview-1d.stat,
> d2991-preview-1e.diff, derby.log, InsertSelectDeadlock.java, perftest.diff,
> Repro2991.java, stacktraces_during_deadlock.txt
>
>
> After doing dome research on the mailing list, it appears that the index
> split deadlock is a known behaviour, so I will start by describing the
> theoretical problem first and then follow with the details of my test case.
> If you have concurrent select and insert transactions on the same table, the
> observed locking behaviour is as follows:
> - the select transaction acquires an S lock on the root block of the index
> and then waits for an S lock on some uncommitted row of the insert transaction
> - the insert transaction acquires X locks on the inserted records and if it
> needs to do an index split creates a sub-transaction that tries to acquire an
> X lock on the root block of the index
> In summary: INDEX LOCK followed by ROW LOCK + ROW LOCK followed by INDEX LOCK
> = deadlock
> In the case of my project this is an important issue (lack of concurrency
> after being forced to use table level locking) and I would like to contribute
> to the project and fix this issue (if possible). I was wondering if someone
> that knows the code can give me a few pointers on the implications of this
> issue:
> - Is this a limitation of the top-down algorithm used?
> - Would fixing it require to use a bottom up algorithm for better
> concurrency (which is certainly non trivial)?
> - Trying to break the circular locking above, I would first question why
> does the select transaction need to acquire (and hold) a lock on the root
> block of the index. Would it be possible to ensure the consistency of the
> select without locking the index?
> -----
> The attached test (InsertSelectDeadlock.java) tries to simulate a typical
> data collection application, it consists of:
> - an insert thread that inserts records in batch
> - a select thread that 'processes' the records inserted by the other thread:
> 'select * from table where id > ?'
> The derby log provides detail about the deadlock trace and
> stacktraces_during_deadlock.txt shows that the inser thread is doing an index
> split.
> The test was run on 10.2.2.0 and 10.3.1.4 with identical behaviour.
> Thanks,
> Bogdan Calmac.
--
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.