Philipp Moritz created ARROW-2920:
-------------------------------------

             Summary: [Python] Segfault with pytorch 0.4
                 Key: ARROW-2920
                 URL: https://issues.apache.org/jira/browse/ARROW-2920
             Project: Apache Arrow
          Issue Type: Bug
            Reporter: Philipp Moritz


See also [https://github.com/ray-project/ray/issues/2447]

How to reproduce:
 * Start the Ubuntu Deep Learning AMI (version 12.0) on EC2
 * Create a new env with {{conda create -y -n breaking-env python=3.5}}
 * Install pytorch with {{source activate breaking-env && conda install pytorch 
torchvision cuda91 -c pytorch}}

 * Compile and install manylinux1 pyarrow wheels from latest arrow master as 
described here: 
https://github.com/apache/arrow/blob/2876a3fdd1fb9ef6918b7214d6e8d1e3017b42ad/python/manylinux1/README.md
 * In the breaking-env just created, run the following:

 
{code:java}
Python 3.5.5 |Anaconda, Inc.| (default, May 13 2018, 21:12:35)

[GCC 7.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import pyarrow

>>> import torch

>>> torch.nn.Conv2d(64, 2, kernel_size=3, stride=1, padding=1, 
>>> bias=False).cuda()

Segmentation fault (core dumped){code}
 

Backtrace:
{code:java}
>>> torch.nn.Conv2d(64, 2, kernel_size=3, stride=1, padding=1, 
>>> bias=False).cuda()



Program received signal SIGSEGV, Segmentation fault.

0x0000000000000000 in ?? ()

(gdb) bt

#0  0x0000000000000000 in ?? ()

#1  0x00007ffff7bc8a99 in __pthread_once_slow (once_control=0x7fffdb791e50 
<at::globalContext()::globalContext_+400>, init_routine=0x7fffe46aafe1 
<std::__once_proxy()>)

    at pthread_once.c:116

#2  0x00007fffda95c302 in at::Type::toBackend(at::Backend) const () from 
/home/ubuntu/anaconda3/envs/breaking-env2/lib/python3.5/site-packages/torch/lib/libcaffe2.so

#3  0x00007fffdc59b231 in torch::autograd::VariableType::toBackend 
(this=<optimized out>, b=<optimized out>) at 
torch/csrc/autograd/generated/VariableType.cpp:145

#4  0x00007fffdc8dbe8a in torch::autograd::THPVariable_cuda 
(self=0x7ffff6dbff78, args=0x7ffff6daf828, kwargs=0x0) at 
torch/csrc/autograd/generated/python_variable_methods.cpp:333

#5  0x000055555569f4e8 in PyCFunction_Call ()

#6  0x00005555556f67cc in PyEval_EvalFrameEx ()

#7  0x00005555556fbe08 in PyEval_EvalFrameEx ()

#8  0x00005555556f6e90 in PyEval_EvalFrameEx ()

#9  0x00005555556fbe08 in PyEval_EvalFrameEx ()

#10 0x000055555570103d in PyEval_EvalCodeEx ()

#11 0x0000555555701f5c in PyEval_EvalCode ()

#12 0x000055555575e454 in run_mod ()

#13 0x000055555562ab5e in PyRun_InteractiveOneObject ()

#14 0x000055555562ad01 in PyRun_InteractiveLoopFlags ()

#15 0x000055555562ad62 in PyRun_AnyFileExFlags.cold.2784 ()

#16 0x000055555562b080 in Py_Main.cold.2785 ()

#17 0x000055555562b871 in main (){code}



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to