Taylor Johnson created ARROW-4633:
-------------------------------------
Summary: ParquetFile.read(use_threads=False) creates ThreadPool
anyway
Key: ARROW-4633
URL: https://issues.apache.org/jira/browse/ARROW-4633
Project: Apache Arrow
Issue Type: Bug
Components: Python
Affects Versions: 0.12.0, 0.11.1
Environment: Linux, Python 3.7.1, pyarrow.__version__ = 0.12.0
Reporter: Taylor Johnson
The following code seems to suggest that ParquetFile.read(use_threads=False)
still creates a ThreadPool. This is observed in
ParquetFile.read_row_group(use_threads=False) as well.
This does not appear to be a problem in
pyarrow.Table.to_pandas(use_threads=False).
I've tried tracing the error. Starting in python/pyarrow/parquet.py, both
ParquetReader.read_all() and ParquetReader.read_row_group() pass the
use_threads input along to self.reader which is a ParquetReader imported from
_parquet.pyx
Following the calls into python/pyarrow/_parquet.pyx, we see that
ParquetReader.read_all() and ParquetReader.read_row_group() have the following
code which seems a bit suspicious
{quote}if use_threads:
self.set_use_threads(use_threads)
{quote}
Why not just always call self.set_use_threads(use_threads)?
The ParquetReader.set_use_threads simply calls
self.reader.get().set_use_threads(use_threads). This self.reader is assigned
as unique_ptr[FileReader]. I think this points to
cpp/src/parquet/arrow/reader.cc, but I'm not sure about that. The
FileReader::Impl::ReadRowGroup logic looks ok, as a call to
::arrow::internal::GetCpuThreadPool() is only called if use_threads is True.
The same is true for ReadTable.
So when is the ThreadPool getting created?
Example code:
--------------------------------------------------
{quote}import pandas as pd
import psutil
import pyarrow as pa
import pyarrow.parquet as pq
use_threads=False
p=psutil.Process()
print('Starting with {} threads'.format(p.num_threads()))
df = pd.DataFrame(\{'x':[0]})
table = pa.Table.from_pandas(df)
print('After table creation, {} threads'.format(p.num_threads()))
df = table.to_pandas(use_threads=use_threads)
print('table.to_pandas(use_threads={}), {} threads'.format(use_threads,
p.num_threads()))
writer = pq.ParquetWriter('tmp.parquet', table.schema)
writer.write_table(table)
writer.close()
print('After writing parquet file, {} threads'.format(p.num_threads()))
pf = pq.ParquetFile('tmp.parquet')
print('After ParquetFile, {} threads'.format(p.num_threads()))
df = pf.read(use_threads=use_threads).to_pandas()
print('After pf.read(use_threads={}), {} threads'.format(use_threads,
p.num_threads()))
{quote}
-----------------------------------------------------------------------
$ python pyarrow_test.py
Starting with 1 threads
After table creation, 1 threads
table.to_pandas(use_threads=False), 1 threads
After writing parquet file, 1 threads
After ParquetFile, 1 threads
After pf.read(use_threads=False), 5 threads
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)