Joe Muruganandam created ARROW-5359:
---------------------------------------
Summary: timestamp_as_object support for pa.Table.to_pandas in
pyarrow
Key: ARROW-5359
URL: https://issues.apache.org/jira/browse/ARROW-5359
Project: Apache Arrow
Issue Type: Bug
Components: Python
Affects Versions: 0.13.0
Environment: Ubuntu
Reporter: Joe Muruganandam
Creating ticket for issue reported in
github([https://github.com/apache/arrow/issues/4284])
h2. pyarrow (Issue with timestamp conversion from arrow to pandas)
pyarrow Table.to_pandas has option date_as_object but does not have similar
option for timestamp. When a timestamp column in arrow table is converted to
pandas the target datetype is pd.Timestamp and pd.Timestamp does not handle
time > 2262-04-11 23:47:16.854775807 and hence in the below scenario the date
is transformed to incorrect value. Adding timestamp_as_object option in
pa.Table.to_pandas will help in this scenario.
#Python(3.6.8)
import pandas as pd
import pyarrow as pa
pd.*version*
'0.24.1'
pa.*version*
'0.13.0'
import datetime
df = pd.DataFrame(\{"test_date":
[datetime.datetime(3000,12,31,12,0),datetime.datetime(3100,12,31,12,0)]})
df
test_date
0 3000-12-31 12:00:00
1 3100-12-31 12:00:00
pa_table = pa.Table.from_pandas(df)
pa_table[0]
Column name='test_date' type=TimestampType(timestamp[us])
[
[
32535172800000000,
35690846400000000
]
]
pa_table.to_pandas()
test_date
0 1831-11-22 12:50:52.580896768
1 1931-11-22 12:50:52.580896768
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)