[
https://issues.apache.org/jira/browse/BAHIR-261?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Abdul-Raheman MouhamadSultane updated BAHIR-261:
------------------------------------------------
Priority: Minor (was: Major)
> Integration of streaming-pubsub in Pyspark
> ------------------------------------------
>
> Key: BAHIR-261
> URL: https://issues.apache.org/jira/browse/BAHIR-261
> Project: Bahir
> Issue Type: Bug
> Components: Spark Structured Streaming Connectors
> Affects Versions: Spark-2.4.0
> Environment: MacOS Big Sur 11.2.1
> PySpark cmd (./spark-2.4.7-bin-hadoop2.7/bin/pyspark --packages
> org.apache.bahir:spark-streaming-pubsub_2.11:2.4.0)
> Reporter: Abdul-Raheman MouhamadSultane
> Priority: Minor
> Labels: GCP, pubsub, pyspark, question, stream
>
> Hello folks 👋
> Â
> I was wondering if there is a possible update that will allow to use pub/subÂ
> DStream in PySpark, it does not seems to exist with the current version
> (2.4.0).
> Â
> I tried to manually instantiate the pub/sub stream from Pyspark as follow:
> Â
> {code:java}
> import pyspark
> from pyspark.streaming import DStream, StreamingContext
> from pyspark.serializers import UTF8Deserializer
> ssc = StreamingContext(sc, 1)
> jlevel = ssc._sc._getJavaStorageLevel(pyspark.StorageLevel.MEMORY_AND_DISK_2)
> creds =
> sc._jvm.org.apache.spark.streaming.pubsub.SparkGCPCredentials.Builder().jsonServiceAccount("GDCP_CREDS.json").build()
> jstream =
> sc._jvm.org.apache.spark.streaming.pubsub.PubsubUtils.createStream(ssc._jssc,
> "PROJECT_NAME", None, "SUB_NAME", creds, jlevel)
> dstream = DStream(jstream, ssc, UTF8Deserializer())
> ssc.start()ssc.awaitTermination()
> df.writeStream.foreachBatch(batch_processor).start().awaitTermination(){code}
> Â
> Â
> But I run into the following issue (*org.apache.spark.SparkException:
> Unexpected element type class
> org.apache.spark.streaming.pubsub.SparkPubsubMessage*)
> {code:java}
> 21/02/25 10:48:59 ERROR TaskSetManager: Task 0 in stage 2.0 failed 1 times;
> aborting job
> 21/02/25 10:48:59 ERROR JobScheduler: Error running job streaming job
> 1614246539000 ms.0
> org.apache.spark.SparkException: An exception was raised by Python:
> Traceback (most recent call last):
> File
> "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/streaming/util.py",
> line 68, in call
> r = self.func(t, *rdds)
> File
> "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/streaming/dstream.py",
> line 173, in takeAndPrint
> taken = rdd.take(num + 1)
> File
> "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/rdd.py",
> line 1360, in take
> res = self.context.runJob(self, takeUpToNumLeft, p)
> File
> "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/context.py",
> line 1069, in runJob
> sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd,
> partitions)
> File
> "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py",
> line 1257, in __call__
> answer, self.gateway_client, self.target_id, self.name)
> File
> "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/pyspark/sql/utils.py",
> line 63, in deco
> return f(*a, **kw)
> File
> "/PATH/test_streaming_call/spark-2.4.7-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py",
> line 328, in get_return_value
> format(target_id, ".", name), value)
> Py4JJavaError: An error occurred while calling
> z:org.apache.spark.api.python.PythonRDD.runJob.
> : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0
> in stage 2.0 failed 1 times, most recent failure: Lost task 0.0 in stage 2.0
> (TID 2, localhost, executor driver): org.apache.spark.SparkException:
> Unexpected element type class
> org.apache.spark.streaming.pubsub.SparkPubsubMessage
> at
> org.apache.spark.api.python.PythonRDD$.org$apache$spark$api$python$PythonRDD$$write$1(PythonRDD.scala:221)
> at
> org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
> at
> org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
> at scala.collection.Iterator$class.foreach(Iterator.scala:891)
> at
> org.apache.spark.util.CompletionIterator.foreach(CompletionIterator.scala:25)
> at
> org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224)
> at
> org.apache.spark.api.python.PythonRunner$$anon$2.writeIteratorToStream(PythonRunner.scala:561)
> at
> org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:346)
> at
> org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
> at
> org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:195)Driver
> stacktrace:
> at
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1925)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1913)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1912)
> at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
> at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1912)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:948)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:948)
> at scala.Option.foreach(Option.scala:257)
> at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:948)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2146)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2095)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2084)
> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
> at
> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:759)
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
> at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:153)
> at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
> at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.lang.reflect.Method.invoke(Method.java:498)
> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
> at py4j.Gateway.invoke(Gateway.java:282)
> at
> py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
> at py4j.commands.CallCommand.execute(CallCommand.java:79)
> at py4j.GatewayConnection.run(GatewayConnection.java:238)
> at java.lang.Thread.run(Thread.java:748)
> Caused by: org.apache.spark.SparkException: Unexpected element type class
> org.apache.spark.streaming.pubsub.SparkPubsubMessage
> at
> org.apache.spark.api.python.PythonRDD$.org$apache$spark$api$python$PythonRDD$$write$1(PythonRDD.scala:221)
> at
> org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
> at
> org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:224)
> at scala.collection.Iterator$class.foreach(Iterator.scala:891)
> at
> org.apache.spark.util.CompletionIterator.foreach(CompletionIterator.scala:25)
> at
> org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224)
> at
> org.apache.spark.api.python.PythonRunner$$anon$2.writeIteratorToStream(PythonRunner.scala:561)
> at
> org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:346)
> at
> org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
> at
> org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:195)
> at
> org.apache.spark.streaming.api.python.TransformFunction.callPythonTransformFunction(PythonDStream.scala:95)
> at
> org.apache.spark.streaming.api.python.TransformFunction.apply(PythonDStream.scala:78)
> at
> org.apache.spark.streaming.api.python.PythonDStream$$anonfun$callForeachRDD$1.apply(PythonDStream.scala:179)
> at
> org.apache.spark.streaming.api.python.PythonDStream$$anonfun$callForeachRDD$1.apply(PythonDStream.scala:179)
> at
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
> at
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
> at
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
> at
> org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416)
> at
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
> at
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
> at
> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
> at scala.util.Try$.apply(Try.scala:192)
> at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
> at
> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257)
> at
> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257)
> at
> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257)
> at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
> at
> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
> at java.lang.Thread.run(Thread.java:748)
> {code}
> Seems that the receiver *store* data in internal format calledÂ
> *SparkPubsubMessage* format
> ([https://github.com/apache/bahir/blob/62df1108145ee0305c5c7416a7dadeae5930aab8/streaming-pubsub/src/main/scala/org/apache/spark/streaming/pubsub/PubsubInputDStream.scala#L68)]
> Â
> Is there a way to make RDD in python interpret the *SparkPubsubMessage*Â
> object ?
> Â
> Thanks a lot, feel free to ask details if needed :DÂ !
> Â
--
This message was sent by Atlassian Jira
(v8.3.4#803005)