I'm not sure if that could be a problem. I'm *not* running snadalone Spark. I applied some modifications to the code to run Beam tasks on k8s cluster using spark-submit. Therefore, worker nodes are spawned when spark-submit is called and connect to the master, and are supposed to be destroyed when job is finished.
Therefore, the crash should have some other reason.
Sent: Friday, December 13, 2019 at 2:37 PM
From: "Kyle Weaver" <[email protected]>
To: dev <[email protected]>
Subject: Re: Beam's job crashes on cluster
From: "Kyle Weaver" <[email protected]>
To: dev <[email protected]>
Subject: Re: Beam's job crashes on cluster
Correction: should be formatted `spark://host:port`. Should follow the rules here: https://spark.apache.org/docs/latest/submitting-applications.html#master-urls
On Fri, Dec 13, 2019 at 12:36 PM Kyle Weaver <[email protected]> wrote:
You probably will want to add argument `-PsparkMasterUrl=localhost:8080` (or whatever host:port your Spark master is on) to the job-server:runShadow command.Without specifying the master URL, the default is to start an embedded Spark master within the same JVM as the job server, rather than using your standalone master.On Fri, Dec 13, 2019 at 12:15 PM Matthew K. <[email protected]> wrote:Job server is running on master node by this:./gradlew :runners:spark:job-server:runShadow --gradle-user-home `pwd`Spark workers (executors) run on separate nodes, sharing /tmp (1GB size) in order to be able to access Beam job's MANIFEST. I'm running Python 2.7.There is no other shared resources between them. A pure Spark job works fine on the cluster (as far as I tested a simple one). If I'm not wrong, beam job executes with no problem when all master and workers run on the same node (but separate containers).Sent: Friday, December 13, 2019 at 1:49 PM
From: "Kyle Weaver" <[email protected]>
To: [email protected]
Subject: Re: Beam's job crashes on cluster> Do workers need to talk to job server independent from spark executors?No, they don't.From the time stamps in your logs, it looks like the sigbus happened after the executor was lost.Some additional info that might help us establish a chain of causation:- the arguments you used to start the job server?- the spark cluster deployment setup?On Fri, Dec 13, 2019 at 8:00 AM Matthew K. <[email protected]> wrote:Actually the reason for that error is Job Server/JRE crashes at final stages and service becomes unavailable (note: job is on a very small dataset that is the absence of cluster, will be done in a couple of seconds):19/12/13 15:22:11 INFO ContextCleaner: Cleaned accumulator 43
19/12/13 15:22:11 INFO ContextCleaner: Cleaned accumulator 295
19/12/13 15:22:11 INFO ContextCleaner: Cleaned accumulator 4
19/12/13 15:22:11 INFO BlockManagerInfo: Removed broadcast_13_piece0 on sparkpi-1576249172021-driver-svc.xyz.svc:7079 in memory (size: 14.4 KB, free: 967.8 MB)
19/12/13 15:22:11 INFO BlockManagerInfo: Removed broadcast_13_piece0 on 192.168.102.238:46463 in memory (size: 14.4 KB, free: 3.3 GB)
19/12/13 15:22:11 INFO BlockManagerInfo: Removed broadcast_13_piece0 on 192.168.78.233:35881 in memory (size: 14.4 KB, free: 3.3 GB)
19/12/13 15:22:11 INFO ContextCleaner: Cleaned accumulator 222
19/12/13 15:22:11 INFO ContextCleaner: Cleaned accumulator 294
19/12/13 15:22:11 INFO ContextCleaner: Cleaned accumulator 37
<============-> 98% EXECUTING [2m 26s]
> IDLE
> IDLE
> IDLE
> :runners:spark:job-server:runShadow
#
# A fatal error has been detected by the Java Runtime Environment:
#
# SIGBUS (0x7) at pc=0x00007f5ad7cd0d5e, pid=825, tid=0x00007f5abb886700
#
# JRE version: OpenJDK Runtime Environment (8.0_232-b09) (build 1.8.0_232-b09)
# Java VM: OpenJDK 64-Bit Server VM (25.232-b09 mixed mode linux-amd64 compressed oops)
# Problematic frame:
# V [libjvm.so+0x8f8d5e] PerfLongVariant::sample()+0x1e
#
# Core dump written. Default location: /opt/spark/beam/core or core.825
#
# An error report file with more information is saved as:
# /opt/spark/beam/hs_err_pid825.log
#
# If you would like to submit a bug report, please visit:
# http://bugreport.java.com/bugreport/crash.jsp
#
Aborted (core dumped)From /opt/spark/beam/hs_err_pid825.log:Internal exceptions (10 events):
Event: 0.664 Thread 0x00007f5ad000a800 Exception <a 'java/lang/ArrayIndexOutOfBoundsException'> (0x0000000794d72040) thrown at [/home/openjdk/jdk8u/hotspot/src/share/vm/runtime/sharedRuntime.cpp, line 605]
Event: 0.664 Thread 0x00007f5ad000a800 Exception <a 'java/lang/ArrayIndexOutOfBoundsException'> (0x0000000794d73e60) thrown at [/home/openjdk/jdk8u/hotspot/src/share/vm/runtime/sharedRuntime.cpp, line 605]
Event: 0.665 Thread 0x00007f5ad000a800 Exception <a 'java/lang/ArrayIndexOutOfBoundsException'> (0x0000000794d885d0) thrown at [/home/openjdk/jdk8u/hotspot/src/share/vm/runtime/sharedRuntime.cpp, line 605]
Event: 0.665 Thread 0x00007f5ad000a800 Exception <a 'java/lang/ArrayIndexOutOfBoundsException'> (0x0000000794d8c6d8) thrown at [/home/openjdk/jdk8u/hotspot/src/share/vm/runtime/sharedRuntime.cpp, line 605]
Event: 0.673 Thread 0x00007f5ad000a800 Exception <a 'java/lang/ArrayIndexOutOfBoundsException'> (0x0000000794df7b70) thrown at [/home/openjdk/jdk8u/hotspot/src/share/vm/runtime/sharedRuntime.cpp, line 605]
Event: 0.674 Thread 0x00007f5ad000a800 Exception <a 'java/lang/ArrayIndexOutOfBoundsException'> (0x0000000794df8f38) thrown at [/home/openjdk/jdk8u/hotspot/src/share/vm/runtime/sharedRuntime.cpp, line 605] Event: 0.674 Thread 0x00007f5ad000a800 Exception <a 'java/lang/ArrayIndexOutOfBoundsException'> (0x0000000794dfa5b8) thrown at [/home/openjdk/jdk8u/hotspot/src/share/vm/runtime/sharedRuntime.cpp, line 605]
Event: 0.674 Thread 0x00007f5ad000a800 Exception <a 'java/lang/ArrayIndexOutOfBoundsException'> (0x0000000794dfb6f0) thrown at [/home/openjdk/jdk8u/hotspot/src/share/vm/runtime/sharedRuntime.cpp, line 605]
Event: 0.674 Thread 0x00007f5ad000a800 Exception <a 'java/lang/ArrayIndexOutOfBoundsException'> (0x0000000794dfedf0) thrown at [/home/openjdk/jdk8u/hotspot/src/share/vm/runtime/sharedRuntime.cpp, line 605]
Event: 0.695 Thread 0x00007f5ad000a800 Exception <a 'java/lang/NoClassDefFoundError': org/slf4j/impl/StaticMarkerBinder> (0x0000000794f69e70) thrown at [/home/openjdk/jdk8u/hotspot/src/share/vm/classfile/systemDictionary.cpp, line 199]Looking at the logs when running the script, I can see exectors become lost, but not sure if that might be related to the crash of the job server:19/12/13 15:07:29 INFO TaskSetManager: Starting task 0.0 in stage 9.0 (TID 13, 192.168.118.75, executor 1, partition 0, PROCESS_LOCAL, 8055 bytes)
19/12/13 15:07:29 INFO BlockManagerInfo: Added broadcast_10_piece0 in memory on 192.168.118.75:37327 (size: 47.3 KB, free: 3.3 GB)
19/12/13 15:07:29 INFO TaskSetManager: Starting task 3.0 in stage 9.0 (TID 14, 192.168.118.75, executor 1, partition 3, PROCESS_LOCAL, 7779 bytes)
19/12/13 15:07:29 INFO TaskSetManager: Finished task 0.0 in stage 9.0 (TID 13) in 37 ms on 192.168.118.75 (executor 1) (1/4)
19/12/13 15:07:29 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 8 to 192.168.118.75:49158
19/12/13 15:07:30 INFO KubernetesClusterSchedulerBackend$KubernetesDriverEndpoint: Disabling executor 2.
19/12/13 15:07:30 INFO DAGScheduler: Executor lost: 2 (epoch 4)Which result in losing shuffle files, and the following exception:19/12/13 15:07:30 INFO DAGScheduler: Shuffle files lost for executor: 2 (epoch 4)
19/12/13 15:07:33 INFO TaskSetManager: Starting task 1.0 in stage 7.0 (TID 15, 192.168.118.75, executor 1, partition 1, ANY, 7670 bytes)
19/12/13 15:07:33 INFO TaskSetManager: Finished task 3.0 in stage 9.0 (TID 14) in 3436 ms on 192.168.118.75 (executor 1) (2/4)
19/12/13 15:07:33 INFO BlockManagerInfo: Added broadcast_8_piece0 in memory on 192.168.118.75:37327 (size: 17.3 KB, free: 3.3 GB)
19/12/13 15:07:33 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 7 to 192.168.118.75:49158
19/12/13 15:07:33 INFO TaskSetManager: Starting task 0.0 in stage 8.0 (TID 16, 192.168.118.75, executor 1, partition 0, ANY, 7670 bytes)
19/12/13 15:07:33 WARN TaskSetManager: Lost task 1.0 in stage 7.0 (TID 15, 192.168.118.75, executor 1): FetchFailed(null, shuffleId=7, mapId=-1, reduceId=1, message=
org.apache.spark.shuffle.MetadataFetchFailedException: Missing an output location for shuffle 7
at org.apache.spark.MapOutputTracker$$anonfun$convertMapStatuses$2.apply(MapOutputTracker.scala:882)
at org.apache.spark.MapOutputTracker$$anonfun$convertMapStatuses$2.apply(MapOutputTracker.scala:878)
at scala.collection.Iterator$class.foreach(Iterator.scala:891)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
at org.apache.spark.MapOutputTracker$.convertMapStatuses(MapOutputTracker.scala:878)
at org.apache.spark.MapOutputTrackerWorker.getMapSizesByExecutorId(MapOutputTracker.scala:691)
at org.apache.spark.shuffle.BlockStoreShuffleReader.read(BlockStoreShuffleReader.scala:49)
at org.apache.spark.rdd.ShuffledRDD.compute(ShuffledRDD.scala:105)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD$$anonfun$7.apply(RDD.scala:337)
at org.apache.spark.rdd.RDD$$anonfun$7.apply(RDD.scala:335)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1165)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1156)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:1091)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1156)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:882)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:335)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:286)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)Sent: Friday, December 13, 2019 at 6:58 AM
From: "Matthew K." <[email protected]>
To: [email protected]
Cc: dev <[email protected]>
Subject: Re: Beam's job crashes on clusterHi Kyle,This is the pipeleine options config (I replaced localhost with actual job server's IP address, and still receive the same error. Do workers need to talk to job server independent from spark executors?):options = PipelineOptions([
"--runner=PortableRunner",
"--job_endpoint=%s:8099" % ip_address,
"--environment_type=PROCESS",
"--environment_config={\"command\":\"/opt/spark/beam/sdks/python/container/build/target/launcher/linux_amd64/boot\"}",
""
])Sent: Thursday, December 12, 2019 at 5:30 PM
From: "Kyle Weaver" <[email protected]>
To: dev <[email protected]>
Subject: Re: Beam's job crashes on clusterCan you share the pipeline options you are using? Particularly environment_type and environment_config.On Thu, Dec 12, 2019 at 2:58 PM Matthew K. <[email protected]> wrote:Running Beam on Spark cluster, it crashhes and I get the following error (workers are on separate nodes, it works fine when workers are on the same node as runner):> Task :runners:spark:job-server:runShadow FAILED
Exception in thread wait_until_finish_read:
Traceback (most recent call last):
File "/usr/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()
File "/usr/lib/python2.7/threading.py", line 754, in run
self.__target(*self.__args, **self.__kwargs)
File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/portability/portable_runner.py", line 411, in read_messages
for message in self._message_stream:
File "/usr/local/lib/python2.7/dist-packages/grpc/_channel.py", line 395, in next
return self._next()
File "/usr/local/lib/python2.7/dist-packages/grpc/_channel.py", line 561, in _next
raise self
_Rendezvous: <_Rendezvous of RPC that terminated with:
status = StatusCode.UNAVAILABLE
details = "Socket closed"
debug_error_string = "{"created":"@1576190515.361076583","description":"Error received from peer ipv4:127.0.0.1:8099","file":"src/core/lib/surface/call.cc","file_line":1055,"grpc_message":"Socket closed","grpc_status":14}"
>Traceback (most recent call last):
File "/opt/spark/work-dir/beam_script.py", line 49, in <module>
stats = tfdv.generate_statistics_from_csv(data_location=DATA_LOCATION, pipeline_options=options)
File "/usr/local/lib/python2.7/dist-packages/tensorflow_data_validation/utils/stats_gen_lib.py", line 197, in generate_statistics_from_csv
statistics_pb2.DatasetFeatureStatisticsList)))
File "/usr/local/lib/python2.7/dist-packages/apache_beam/pipeline.py", line 427, in __exit__
self.run().wait_until_finish()
File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/portability/portable_runner.py", line 429, in wait_until_finish
for state_response in self._state_stream:
File "/usr/local/lib/python2.7/dist-packages/grpc/_channel.py", line 395, in next
return self._next()
File "/usr/local/lib/python2.7/dist-packages/grpc/_channel.py", line 561, in _next
raise self
grpc._channel._Rendezvous: <_Rendezvous of RPC that terminated with:
status = StatusCode.UNAVAILABLE
details = "Socket closed"
debug_error_string = "{"created":"@1576190515.361053677","description":"Error received from peer ipv4:127.0.0.1:8099","file":"src/core/lib/surface/call.cc","file_line":1055,"grpc_message":"Socket closed","grpc_status":14}"
