Hi Liang,

I made changes in log4j.properties file of Spark. I changed INFO with ERROR to stop this issue.


Thank you


Regards

Faisal


On 26/05/2017 17:51, Liang Chen wrote:
Hi Rana

Please let us know if your issue be solved?

Regards
Liang

2017-05-25 20:38 GMT+08:00 Liang Chen <[email protected]>:

Hi Rana

Your this query is in Spark-shell ?
Please try the below script:

import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)


Regards
Liang

Rana Faisal Munir wrote
Hi,

Today, I was running a filter query ("SELECT  *  FROM widetable WHERE
col_long_0 = 0") on a wide table with 1187 columns and Spark started
printing the below output. It spills alot of log which I want to turn
off. There is any option to turn it off.  I have tried both option
(ERROR,INFO) in log4j.properties file. It did not work for me.

Thank you

Regards
Faisal


17/05/24 12:39:41 INFO CarbonLateDecodeRule: main Starting to optimize
plan
17/05/24 12:39:41 INFO CarbonLateDecodeRule: main Skip CarbonOptimizer
17/05/24 12:39:42 INFO deprecation: mapred.job.id is deprecated.
Instead, use mapreduce.job.id
17/05/24 12:39:42 INFO deprecation: mapred.tip.id is deprecated.
Instead, use mapreduce.task.id
17/05/24 12:39:42 INFO deprecation: mapred.task.id is deprecated.
Instead, use mapreduce.task.attempt.id
17/05/24 12:39:42 INFO deprecation: mapred.task.is.map is deprecated.
Instead, use mapreduce.task.ismap
17/05/24 12:39:42 INFO deprecation: mapred.task.partition is deprecated.
Instead, use mapreduce.task.partition
17/05/24 12:39:42 INFO FileOutputCommitter: File Output Committer
Algorithm version is 1
17/05/24 12:39:42 INFO SQLHadoopMapReduceCommitProtocol: Using output
committer class org.apache.hadoop.mapreduce.
lib.output.FileOutputCommitter
17/05/24 12:39:44 ERROR CodeGenerator: failed to compile:
org.codehaus.janino.JaninoRuntimeException: Code of method
"processNext()V" of class
"org.apache.spark.sql.catalyst.expressions.GeneratedClass$
GeneratedIterator"
grows beyond 64 KB
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIterator(references);
/* 003 */ }
/* 004 */
/* 005 */ final class GeneratedIterator extends
org.apache.spark.sql.execution.BufferedRowIterator {
/* 006 */   private Object[] references;
/* 007 */   private scala.collection.Iterator[] inputs;
/* 008 */   private scala.collection.Iterator scan_input;
/* 009 */   private org.apache.spark.sql.execution.metric.SQLMetric
scan_numOutputRows;
/* 010 */   private org.apache.spark.sql.execution.metric.SQLMetric
scan_scanTime;
/* 011 */   private long scan_scanTime1;
/* 012 */   private
org.apache.spark.sql.execution.vectorized.ColumnarBatch scan_batch;
/* 013 */   private int scan_batchIdx;
/* 014 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance0;
/* 015 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance1;
/* 016 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance2;
/* 017 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance3;
/* 018 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance4;
/* 019 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance5;
/* 020 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance6;
/* 021 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance7;
/* 022 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance8;
/* 023 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance9;
/* 024 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance10;
/* 025 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance11;
/* 026 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance12;
/* 027 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance13;
/* 028 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance14;
/* 029 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance15;
/* 030 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance16;
/* 031 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance17;
/* 032 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance18;
/* 033 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance19;
/* 034 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance20;
/* 035 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance21;
/* 036 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance22;
/* 037 */   private
org.apache.spark.sql.execution.vectorized.ColumnVector
scan_colInstance23;





--
View this message in context: http://apache-carbondata-dev-
mailing-list-archive.1130556.n5.nabble.com/Logging-problem-
tp13170p13219.html
Sent from the Apache CarbonData Dev Mailing List archive mailing list
archive at Nabble.com.




Reply via email to