Will do. My aplogies! -Greg

On Fri, Oct 7, 2011 at 3:55 AM, Luc Maisonobe <luc.maison...@free.fr> wrote:

> Le 07/10/2011 07:21, gr...@apache.org a écrit :
>
>  Author: gregs
>> Date: Fri Oct  7 05:21:17 2011
>> New Revision: 1179935
>>
>> URL: 
>> http://svn.apache.org/viewvc?**rev=1179935&view=rev<http://svn.apache.org/viewvc?rev=1179935&view=rev>
>> Log:
>> JIRA Math-630 First push of PivotingQRDecomposition
>>
>> Added:
>>     commons/proper/math/trunk/src/**main/java/org/apache/commons/**
>> math/linear/**PivotingQRDecomposition.java
>>     commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>> math/linear/**PivotingQRDecompositionTest.**java
>>     commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>> math/linear/**PivotingQRSolverTest.java
>>
>
> Hello Greg,
>
> It seems the files do not have the right subversion properties.
> Could you check your global subversion settings and make sure [auto-props]
> is set correctly ?
>
> Thanks
> Luc
>
>
>
>> Added: commons/proper/math/trunk/src/**main/java/org/apache/commons/**
>> math/linear/**PivotingQRDecomposition.java
>> URL: http://svn.apache.org/viewvc/**commons/proper/math/trunk/src/**
>> main/java/org/apache/commons/**math/linear/**
>> PivotingQRDecomposition.java?**rev=1179935&view=auto<http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math/linear/PivotingQRDecomposition.java?rev=1179935&view=auto>
>> ==============================**==============================**
>> ==================
>> --- commons/proper/math/trunk/src/**main/java/org/apache/commons/**
>> math/linear/**PivotingQRDecomposition.java (added)
>> +++ commons/proper/math/trunk/src/**main/java/org/apache/commons/**
>> math/linear/**PivotingQRDecomposition.java Fri Oct  7 05:21:17 2011
>> @@ -0,0 +1,421 @@
>> +/*
>> + * Copyright 2011 The Apache Software Foundation.
>> + *
>> + * Licensed under the Apache License, Version 2.0 (the "License");
>> + * you may not use this file except in compliance with the License.
>> + * You may obtain a copy of the License at
>> + *
>> + *      
>> http://www.apache.org/**licenses/LICENSE-2.0<http://www.apache.org/licenses/LICENSE-2.0>
>> + *
>> + * Unless required by applicable law or agreed to in writing, software
>> + * distributed under the License is distributed on an "AS IS" BASIS,
>> + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
>> implied.
>> + * See the License for the specific language governing permissions and
>> + * limitations under the License.
>> + */
>> +package org.apache.commons.math.**linear;
>> +
>> +import java.util.Arrays;
>> +import org.apache.commons.math.util.**MathUtils;
>> +import org.apache.commons.math.**ConvergenceException;
>> +import org.apache.commons.math.**exception.**DimensionMismatchException;
>> +import org.apache.commons.math.**exception.util.**LocalizedFormats;
>> +import org.apache.commons.math.util.**FastMath;
>> +
>> +/**
>> + *
>> + * @author gregsterijevski
>> + */
>> +public class PivotingQRDecomposition {
>> +
>> +    private double[][] qr;
>> +    /** The diagonal elements of R. */
>> +    private double[] rDiag;
>> +    /** Cached value of Q. */
>> +    private RealMatrix cachedQ;
>> +    /** Cached value of QT. */
>> +    private RealMatrix cachedQT;
>> +    /** Cached value of R. */
>> +    private RealMatrix cachedR;
>> +    /** Cached value of H. */
>> +    private RealMatrix cachedH;
>> +    /** permutation info */
>> +    private int[] permutation;
>> +    /** the rank **/
>> +    private int rank;
>> +    /** vector of column multipliers */
>> +    private double[] beta;
>> +
>> +    public boolean isSingular() {
>> +        return rank != qr[0].length;
>> +    }
>> +
>> +    public int getRank() {
>> +        return rank;
>> +    }
>> +
>> +    public int[] getOrder() {
>> +        return MathUtils.copyOf(permutation);
>> +    }
>> +
>> +    public PivotingQRDecomposition(**RealMatrix matrix) throws
>> ConvergenceException {
>> +        this(matrix, 1.0e-16, true);
>> +    }
>> +
>> +    public PivotingQRDecomposition(**RealMatrix matrix, boolean
>> allowPivot) throws ConvergenceException {
>> +        this(matrix, 1.0e-16, allowPivot);
>> +    }
>> +
>> +    public PivotingQRDecomposition(**RealMatrix matrix, double
>> qrRankingThreshold,
>> +            boolean allowPivot) throws ConvergenceException {
>> +        final int rows = matrix.getRowDimension();
>> +        final int cols = matrix.getColumnDimension();
>> +        qr = matrix.getData();
>> +        rDiag = new double[cols];
>> +        //final double[] norms = new double[cols];
>> +        this.beta = new double[cols];
>> +        this.permutation = new int[cols];
>> +        cachedQ = null;
>> +        cachedQT = null;
>> +        cachedR = null;
>> +        cachedH = null;
>> +
>> +        /*- initialize the permutation vector and calculate the norms */
>> +        for (int k = 0; k<  cols; ++k) {
>> +            permutation[k] = k;
>> +        }
>> +        // transform the matrix column after column
>> +        for (int k = 0; k<  cols; ++k) {
>> +            // select the column with the greatest norm on active
>> components
>> +            int nextColumn = -1;
>> +            double ak2 = Double.NEGATIVE_INFINITY;
>> +            if (allowPivot) {
>> +                for (int i = k; i<  cols; ++i) {
>> +                    double norm2 = 0;
>> +                    for (int j = k; j<  rows; ++j) {
>> +                        final double aki = qr[j][permutation[i]];
>> +                        norm2 += aki * aki;
>> +                    }
>> +                    if (Double.isInfinite(norm2) || Double.isNaN(norm2))
>> {
>> +                        throw new ConvergenceException(**
>> LocalizedFormats.UNABLE_TO_**PERFORM_QR_DECOMPOSITION_ON_**JACOBIAN,
>> +                                rows, cols);
>> +                    }
>> +                    if (norm2>  ak2) {
>> +                        nextColumn = i;
>> +                        ak2 = norm2;
>> +                    }
>> +                }
>> +            } else {
>> +                nextColumn = k;
>> +                ak2 = 0.0;
>> +                for (int j = k; j<  rows; ++j) {
>> +                    final double aki = qr[j][k];
>> +                    ak2 += aki * aki;
>> +                }
>> +            }
>> +            if (ak2<= qrRankingThreshold) {
>> +                rank = k;
>> +                for (int i = rank; i<  rows; i++) {
>> +                    for (int j = i + 1; j<  cols; j++) {
>> +                        qr[i][permutation[j]] = 0.0;
>> +                    }
>> +                }
>> +                return;
>> +            }
>> +            final int pk = permutation[nextColumn];
>> +            permutation[nextColumn] = permutation[k];
>> +            permutation[k] = pk;
>> +
>> +            // choose alpha such that Hk.u = alpha ek
>> +            final double akk = qr[k][pk];
>> +            final double alpha = (akk>  0) ? -FastMath.sqrt(ak2) :
>> FastMath.sqrt(ak2);
>> +            final double betak = 1.0 / (ak2 - akk * alpha);
>> +            beta[pk] = betak;
>> +
>> +            // transform the current column
>> +            rDiag[pk] = alpha;
>> +            qr[k][pk] -= alpha;
>> +
>> +            // transform the remaining columns
>> +            for (int dk = cols - 1 - k; dk>  0; --dk) {
>> +                double gamma = 0;
>> +                for (int j = k; j<  rows; ++j) {
>> +                    gamma += qr[j][pk] * qr[j][permutation[k + dk]];
>> +                }
>> +                gamma *= betak;
>> +                for (int j = k; j<  rows; ++j) {
>> +                    qr[j][permutation[k + dk]] -= gamma * qr[j][pk];
>> +                }
>> +            }
>> +        }
>> +        rank = cols;
>> +        return;
>> +    }
>> +
>> +    /**
>> +     * Returns the matrix Q of the decomposition.
>> +     *<p>Q is an orthogonal matrix</p>
>> +     * @return the Q matrix
>> +     */
>> +    public RealMatrix getQ() {
>> +        if (cachedQ == null) {
>> +            cachedQ = getQT().transpose();
>> +        }
>> +        return cachedQ;
>> +    }
>> +
>> +    /**
>> +     * Returns the transpose of the matrix Q of the decomposition.
>> +     *<p>Q is an orthogonal matrix</p>
>> +     * @return the Q matrix
>> +     */
>> +    public RealMatrix getQT() {
>> +        if (cachedQT == null) {
>> +
>> +            // QT is supposed to be m x m
>> +            final int n = qr[0].length;
>> +            final int m = qr.length;
>> +            cachedQT = MatrixUtils.createRealMatrix(**m, m);
>> +
>> +            /*
>> +             * Q = Q1 Q2 ... Q_m, so Q is formed by first constructing
>> Q_m and then
>> +             * applying the Householder transformations
>> Q_(m-1),Q_(m-2),...,Q1 in
>> +             * succession to the result
>> +             */
>> +            for (int minor = m - 1; minor>= rank; minor--) {
>> +                cachedQT.setEntry(minor, minor, 1.0);
>> +            }
>> +
>> +            for (int minor = rank - 1; minor>= 0; minor--) {
>> +                //final double[] qrtMinor = qrt[minor];
>> +                final int p_minor = permutation[minor];
>> +                cachedQT.setEntry(minor, minor, 1.0);
>> +                //if (qrtMinor[minor] != 0.0) {
>> +                for (int col = minor; col<  m; col++) {
>> +                    double alpha = 0.0;
>> +                    for (int row = minor; row<  m; row++) {
>> +                        alpha -= cachedQT.getEntry(col, row) *
>> qr[row][p_minor];
>> +                    }
>> +                    alpha /= rDiag[p_minor] * qr[minor][p_minor];
>> +                    for (int row = minor; row<  m; row++) {
>> +                        cachedQT.addToEntry(col, row, -alpha *
>> qr[row][p_minor]);
>> +                    }
>> +                }
>> +                //}
>> +            }
>> +        }
>> +        // return the cached matrix
>> +        return cachedQT;
>> +    }
>> +
>> +    /**
>> +     * Returns the matrix R of the decomposition.
>> +     *<p>R is an upper-triangular matrix</p>
>> +     * @return the R matrix
>> +     */
>> +    public RealMatrix getR() {
>> +        if (cachedR == null) {
>> +            // R is supposed to be m x n
>> +            final int n = qr[0].length;
>> +            final int m = qr.length;
>> +            cachedR = MatrixUtils.createRealMatrix(**m, n);
>> +            // copy the diagonal from rDiag and the upper triangle of qr
>> +            for (int row = rank - 1; row>= 0; row--) {
>> +                cachedR.setEntry(row, row, rDiag[permutation[row]]);
>> +                for (int col = row + 1; col<  n; col++) {
>> +                    cachedR.setEntry(row, col,
>> qr[row][permutation[col]]);
>> +                }
>> +            }
>> +        }
>> +        // return the cached matrix
>> +        return cachedR;
>> +    }
>> +
>> +    public RealMatrix getH() {
>> +        if (cachedH == null) {
>> +            final int n = qr[0].length;
>> +            final int m = qr.length;
>> +            cachedH = MatrixUtils.createRealMatrix(**m, n);
>> +            for (int i = 0; i<  m; ++i) {
>> +                for (int j = 0; j<  FastMath.min(i + 1, n); ++j) {
>> +                    final int p_j = permutation[j];
>> +                    cachedH.setEntry(i, j, qr[i][p_j] / -rDiag[p_j]);
>> +                }
>> +            }
>> +        }
>> +        // return the cached matrix
>> +        return cachedH;
>> +    }
>> +
>> +    public RealMatrix getPermutationMatrix() {
>> +        RealMatrix rm = MatrixUtils.createRealMatrix(**qr[0].length,
>> qr[0].length);
>> +        for (int i = 0; i<  this.qr[0].length; i++) {
>> +            rm.setEntry(permutation[i], i, 1.0);
>> +        }
>> +        return rm;
>> +    }
>> +
>> +    public DecompositionSolver getSolver() {
>> +        return new Solver(qr, rDiag, permutation, rank);
>> +    }
>> +
>> +    /** Specialized solver. */
>> +    private static class Solver implements DecompositionSolver {
>> +
>> +        /**
>> +         * A packed TRANSPOSED representation of the QR decomposition.
>> +         *<p>The elements BELOW the diagonal are the elements of the
>> UPPER triangular
>> +         * matrix R, and the rows ABOVE the diagonal are the Householder
>> reflector vectors
>> +         * from which an explicit form of Q can be recomputed if
>> desired.</p>
>> +         */
>> +        private final double[][] qr;
>> +        /** The diagonal elements of R. */
>> +        private final double[] rDiag;
>> +        /** The rank of the matrix      */
>> +        private final int rank;
>> +        /** The permutation matrix      */
>> +        private final int[] perm;
>> +
>> +        /**
>> +         * Build a solver from decomposed matrix.
>> +         * @param qrt packed TRANSPOSED representation of the QR
>> decomposition
>> +         * @param rDiag diagonal elements of R
>> +         */
>> +        private Solver(final double[][] qr, final double[] rDiag, int[]
>> perm, int rank) {
>> +            this.qr = qr;
>> +            this.rDiag = rDiag;
>> +            this.perm = perm;
>> +            this.rank = rank;
>> +        }
>> +
>> +        /** {@inheritDoc} */
>> +        public boolean isNonSingular() {
>> +            if (qr.length>= qr[0].length) {
>> +                return rank == qr[0].length;
>> +            } else { //qr.length<  qr[0].length
>> +                return rank == qr.length;
>> +            }
>> +        }
>> +
>> +        /** {@inheritDoc} */
>> +        public RealVector solve(RealVector b) {
>> +            final int n = qr[0].length;
>> +            final int m = qr.length;
>> +            if (b.getDimension() != m) {
>> +                throw new DimensionMismatchException(b.**getDimension(),
>> m);
>> +            }
>> +            if (!isNonSingular()) {
>> +                throw new SingularMatrixException();
>> +            }
>> +
>> +            final double[] x = new double[n];
>> +            final double[] y = b.toArray();
>> +
>> +            // apply Householder transforms to solve Q.y = b
>> +            for (int minor = 0; minor<  rank; minor++) {
>> +                final int m_idx = perm[minor];
>> +                double dotProduct = 0;
>> +                for (int row = minor; row<  m; row++) {
>> +                    dotProduct += y[row] * qr[row][m_idx];
>> +                }
>> +                dotProduct /= rDiag[m_idx] * qr[minor][m_idx];
>> +                for (int row = minor; row<  m; row++) {
>> +                    y[row] += dotProduct * qr[row][m_idx];
>> +                }
>> +            }
>> +            // solve triangular system R.x = y
>> +            for (int row = rank - 1; row>= 0; --row) {
>> +                final int m_row = perm[row];
>> +                y[row] /= rDiag[m_row];
>> +                final double yRow = y[row];
>> +                //final double[] qrtRow = qrt[row];
>> +                x[perm[row]] = yRow;
>> +                for (int i = 0; i<  row; i++) {
>> +                    y[i] -= yRow * qr[i][m_row];
>> +                }
>> +            }
>> +            return new ArrayRealVector(x, false);
>> +        }
>> +
>> +        /** {@inheritDoc} */
>> +        public RealMatrix solve(RealMatrix b) {
>> +            final int cols = qr[0].length;
>> +            final int rows = qr.length;
>> +            if (b.getRowDimension() != rows) {
>> +                throw new DimensionMismatchException(b.**getRowDimension(),
>> rows);
>> +            }
>> +            if (!isNonSingular()) {
>> +                throw new SingularMatrixException();
>> +            }
>> +
>> +            final int columns = b.getColumnDimension();
>> +            final int blockSize = BlockRealMatrix.BLOCK_SIZE;
>> +            final int cBlocks = (columns + blockSize - 1) / blockSize;
>> +            final double[][] xBlocks = 
>> BlockRealMatrix.**createBlocksLayout(cols,
>> columns);
>> +            final double[][] y = new double[b.getRowDimension()][**
>> blockSize];
>> +            final double[] alpha = new double[blockSize];
>> +            //final BlockRealMatrix result = new BlockRealMatrix(cols,
>> columns, xBlocks, false);
>> +            for (int kBlock = 0; kBlock<  cBlocks; ++kBlock) {
>> +                final int kStart = kBlock * blockSize;
>> +                final int kEnd = FastMath.min(kStart + blockSize,
>> columns);
>> +                final int kWidth = kEnd - kStart;
>> +                // get the right hand side vector
>> +                b.copySubMatrix(0, rows - 1, kStart, kEnd - 1, y);
>> +
>> +                // apply Householder transforms to solve Q.y = b
>> +                for (int minor = 0; minor<  rank; minor++) {
>> +                    final int m_idx = perm[minor];
>> +                    final double factor = 1.0 / (rDiag[m_idx] *
>> qr[minor][m_idx]);
>> +
>> +                    Arrays.fill(alpha, 0, kWidth, 0.0);
>> +                    for (int row = minor; row<  rows; ++row) {
>> +                        final double d = qr[row][m_idx];
>> +                        final double[] yRow = y[row];
>> +                        for (int k = 0; k<  kWidth; ++k) {
>> +                            alpha[k] += d * yRow[k];
>> +                        }
>> +                    }
>> +                    for (int k = 0; k<  kWidth; ++k) {
>> +                        alpha[k] *= factor;
>> +                    }
>> +
>> +                    for (int row = minor; row<  rows; ++row) {
>> +                        final double d = qr[row][m_idx];
>> +                        final double[] yRow = y[row];
>> +                        for (int k = 0; k<  kWidth; ++k) {
>> +                            yRow[k] += alpha[k] * d;
>> +                        }
>> +                    }
>> +                }
>> +
>> +                // solve triangular system R.x = y
>> +                for (int j = rank - 1; j>= 0; --j) {
>> +                    final int jBlock = perm[j] / blockSize; //which block
>> +                    final int jStart = jBlock * blockSize;  // idx of top
>> corner of block in my coord
>> +                    final double factor = 1.0 / rDiag[perm[j]];
>> +                    final double[] yJ = y[j];
>> +                    final double[] xBlock = xBlocks[jBlock * cBlocks +
>> kBlock];
>> +                    int index = (perm[j] - jStart) * kWidth; //to local
>> (block) coordinates
>> +                    for (int k = 0; k<  kWidth; ++k) {
>> +                        yJ[k] *= factor;
>> +                        xBlock[index++] = yJ[k];
>> +                    }
>> +                    for (int i = 0; i<  j; ++i) {
>> +                        final double rIJ = qr[i][perm[j]];
>> +                        final double[] yI = y[i];
>> +                        for (int k = 0; k<  kWidth; ++k) {
>> +                            yI[k] -= yJ[k] * rIJ;
>> +                        }
>> +                    }
>> +                }
>> +            }
>> +            //return result;
>> +            return new BlockRealMatrix(cols, columns, xBlocks, false);
>> +        }
>> +
>> +        /** {@inheritDoc} */
>> +        public RealMatrix getInverse() {
>> +            return solve(MatrixUtils.**createRealIdentityMatrix(**
>> rDiag.length));
>> +        }
>> +    }
>> +}
>>
>> Added: commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>> math/linear/**PivotingQRDecompositionTest.**java
>> URL: http://svn.apache.org/viewvc/**commons/proper/math/trunk/src/**
>> test/java/org/apache/commons/**math/linear/**PivotingQRDecompositionTest.
>> **java?rev=1179935&view=auto<http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math/linear/PivotingQRDecompositionTest.java?rev=1179935&view=auto>
>> ==============================**==============================**
>> ==================
>> --- commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>> math/linear/**PivotingQRDecompositionTest.**java (added)
>> +++ commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>> math/linear/**PivotingQRDecompositionTest.**java Fri Oct  7 05:21:17 2011
>> @@ -0,0 +1,257 @@
>> +/*
>> + * Licensed to the Apache Software Foundation (ASF) under one or more
>> + * contributor license agreements.  See the NOTICE file distributed with
>> + * this work for additional information regarding copyright ownership.
>> + * The ASF licenses this file to You under the Apache License, Version
>> 2.0
>> + * (the "License"); you may not use this file except in compliance with
>> + * the License.  You may obtain a copy of the License at
>> + *
>> + *      
>> http://www.apache.org/**licenses/LICENSE-2.0<http://www.apache.org/licenses/LICENSE-2.0>
>> + *
>> + * Unless required by applicable law or agreed to in writing, software
>> + * distributed under the License is distributed on an "AS IS" BASIS,
>> + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
>> implied.
>> + * See the License for the specific language governing permissions and
>> + * limitations under the License.
>> + */
>> +
>> +package org.apache.commons.math.**linear;
>> +
>> +import java.util.Random;
>> +
>> +
>> +import org.apache.commons.math.**ConvergenceException;
>> +import org.junit.Assert;
>> +import org.junit.Test;
>> +
>> +
>> +public class PivotingQRDecompositionTest {
>> +    double[][] testData3x3NonSingular = {
>> +            { 12, -51, 4 },
>> +            { 6, 167, -68 },
>> +            { -4, 24, -41 }, };
>> +
>> +    double[][] testData3x3Singular = {
>> +            { 1, 4, 7, },
>> +            { 2, 5, 8, },
>> +            { 3, 6, 9, }, };
>> +
>> +    double[][] testData3x4 = {
>> +            { 12, -51, 4, 1 },
>> +            { 6, 167, -68, 2 },
>> +            { -4, 24, -41, 3 }, };
>> +
>> +    double[][] testData4x3 = {
>> +            { 12, -51, 4, },
>> +            { 6, 167, -68, },
>> +            { -4, 24, -41, },
>> +            { -5, 34, 7, }, };
>> +
>> +    private static final double entryTolerance = 10e-16;
>> +
>> +    private static final double normTolerance = 10e-14;
>> +
>> +    /** test dimensions */
>> +    @Test
>> +    public void testDimensions() throws ConvergenceException {
>> +        checkDimension(MatrixUtils.**createRealMatrix(**
>> testData3x3NonSingular));
>> +
>> +        checkDimension(MatrixUtils.**createRealMatrix(testData4x3))**;
>> +
>> +        checkDimension(MatrixUtils.**createRealMatrix(testData3x4))**;
>> +
>> +        Random r = new Random(643895747384642l);
>> +        int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        checkDimension(**createTestMatrix(r, p, q));
>> +        checkDimension(**createTestMatrix(r, q, p));
>> +
>> +    }
>> +
>> +    private void checkDimension(RealMatrix m) throws ConvergenceException
>> {
>> +        int rows = m.getRowDimension();
>> +        int columns = m.getColumnDimension();
>> +        PivotingQRDecomposition qr = new PivotingQRDecomposition(m);
>> +        Assert.assertEquals(rows,    qr.getQ().getRowDimension());
>> +        Assert.assertEquals(rows,    qr.getQ().getColumnDimension()**);
>> +        Assert.assertEquals(rows,    qr.getR().getRowDimension());
>> +        Assert.assertEquals(columns, qr.getR().getColumnDimension()**);
>> +    }
>> +
>> +    /** test A = QR */
>> +    @Test
>> +    public void testAEqualQR() throws ConvergenceException {
>> +        checkAEqualQR(MatrixUtils.**createRealMatrix(**
>> testData3x3NonSingular));
>> +
>> +        checkAEqualQR(MatrixUtils.**createRealMatrix(**
>> testData3x3Singular));
>> +
>> +        checkAEqualQR(MatrixUtils.**createRealMatrix(testData3x4))**;
>> +
>> +        checkAEqualQR(MatrixUtils.**createRealMatrix(testData4x3))**;
>> +
>> +        Random r = new Random(643895747384642l);
>> +        int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        checkAEqualQR(**createTestMatrix(r, p, q));
>> +
>> +        checkAEqualQR(**createTestMatrix(r, q, p));
>> +
>> +    }
>> +
>> +    private void checkAEqualQR(RealMatrix m) throws ConvergenceException
>> {
>> +        PivotingQRDecomposition qr = new PivotingQRDecomposition(m);
>> +        RealMatrix prod =  qr.getQ().multiply(qr.getR()).**multiply(qr.*
>> *getPermutationMatrix().**transpose());
>> +        double norm = prod.subtract(m).getNorm();
>> +        Assert.assertEquals(0, norm, normTolerance);
>> +    }
>> +
>> +    /** test the orthogonality of Q */
>> +    @Test
>> +    public void testQOrthogonal() throws ConvergenceException{
>> +        checkQOrthogonal(MatrixUtils.**createRealMatrix(**
>> testData3x3NonSingular));
>> +
>> +        checkQOrthogonal(MatrixUtils.**createRealMatrix(**
>> testData3x3Singular));
>> +
>> +        checkQOrthogonal(MatrixUtils.**createRealMatrix(testData3x4))**;
>> +
>> +        checkQOrthogonal(MatrixUtils.**createRealMatrix(testData4x3))**;
>> +
>> +        Random r = new Random(643895747384642l);
>> +        int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        checkQOrthogonal(**createTestMatrix(r, p, q));
>> +
>> +        checkQOrthogonal(**createTestMatrix(r, q, p));
>> +
>> +    }
>> +
>> +    private void checkQOrthogonal(RealMatrix m) throws
>> ConvergenceException{
>> +        PivotingQRDecomposition qr = new PivotingQRDecomposition(m);
>> +        RealMatrix eye = MatrixUtils.**createRealIdentityMatrix(m.**
>> getRowDimension());
>> +        double norm = qr.getQT().multiply(qr.getQ())**
>> .subtract(eye).getNorm();
>> +        Assert.assertEquals(0, norm, normTolerance);
>> +    }
>> +//
>> +    /** test that R is upper triangular */
>> +    @Test
>> +    public void testRUpperTriangular() throws ConvergenceException{
>> +        RealMatrix matrix = MatrixUtils.createRealMatrix(**
>> testData3x3NonSingular);
>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>> matrix).getR());
>> +
>> +        matrix = MatrixUtils.createRealMatrix(**testData3x3Singular);
>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>> matrix).getR());
>> +
>> +        matrix = MatrixUtils.createRealMatrix(**testData3x4);
>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>> matrix).getR());
>> +
>> +        matrix = MatrixUtils.createRealMatrix(**testData4x3);
>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>> matrix).getR());
>> +
>> +        Random r = new Random(643895747384642l);
>> +        int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        matrix = createTestMatrix(r, p, q);
>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>> matrix).getR());
>> +
>> +        matrix = createTestMatrix(r, p, q);
>> +        checkUpperTriangular(new PivotingQRDecomposition(**
>> matrix).getR());
>> +
>> +    }
>> +
>> +    private void checkUpperTriangular(**RealMatrix m) {
>> +        m.walkInOptimizedOrder(new DefaultRealMatrixPreservingVis**itor()
>> {
>> +            @Override
>> +            public void visit(int row, int column, double value) {
>> +                if (column<  row) {
>> +                    Assert.assertEquals(0.0, value, entryTolerance);
>> +                }
>> +            }
>> +        });
>> +    }
>> +
>> +    /** test that H is trapezoidal */
>> +    @Test
>> +    public void testHTrapezoidal() throws ConvergenceException{
>> +        RealMatrix matrix = MatrixUtils.createRealMatrix(**
>> testData3x3NonSingular);
>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>> +
>> +        matrix = MatrixUtils.createRealMatrix(**testData3x3Singular);
>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>> +
>> +        matrix = MatrixUtils.createRealMatrix(**testData3x4);
>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>> +
>> +        matrix = MatrixUtils.createRealMatrix(**testData4x3);
>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>> +
>> +        Random r = new Random(643895747384642l);
>> +        int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        matrix = createTestMatrix(r, p, q);
>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>> +
>> +        matrix = createTestMatrix(r, p, q);
>> +        checkTrapezoidal(new PivotingQRDecomposition(**matrix).getH());
>> +
>> +    }
>> +
>> +    private void checkTrapezoidal(RealMatrix m) {
>> +        m.walkInOptimizedOrder(new DefaultRealMatrixPreservingVis**itor()
>> {
>> +            @Override
>> +            public void visit(int row, int column, double value) {
>> +                if (column>  row) {
>> +                    Assert.assertEquals(0.0, value, entryTolerance);
>> +                }
>> +            }
>> +        });
>> +    }
>> +    /** test matrices values */
>> +    @Test
>> +    public void testMatricesValues() throws ConvergenceException{
>> +        PivotingQRDecomposition qr =
>> +            new PivotingQRDecomposition(**MatrixUtils.createRealMatrix(*
>> *testData3x3NonSingular),false)**;
>> +        RealMatrix qRef = MatrixUtils.createRealMatrix(**new double[][]
>> {
>> +                { -12.0 / 14.0,   69.0 / 175.0,  -58.0 / 175.0 },
>> +                {  -6.0 / 14.0, -158.0 / 175.0,    6.0 / 175.0 },
>> +                {   4.0 / 14.0,  -30.0 / 175.0, -165.0 / 175.0 }
>> +        });
>> +        RealMatrix rRef = MatrixUtils.createRealMatrix(**new double[][]
>> {
>> +                { -14.0,  -21.0, 14.0 },
>> +                {   0.0, -175.0, 70.0 },
>> +                {   0.0,    0.0, 35.0 }
>> +        });
>> +        RealMatrix hRef = MatrixUtils.createRealMatrix(**new double[][]
>> {
>> +                { 26.0 / 14.0, 0.0, 0.0 },
>> +                {  6.0 / 14.0, 648.0 / 325.0, 0.0 },
>> +                { -4.0 / 14.0,  36.0 / 325.0, 2.0 }
>> +        });
>> +
>> +        // check values against known references
>> +        RealMatrix q = qr.getQ();
>> +        Assert.assertEquals(0, q.subtract(qRef).getNorm(), 1.0e-13);
>> +        RealMatrix qT = qr.getQT();
>> +        Assert.assertEquals(0, qT.subtract(qRef.transpose()).**getNorm(),
>> 1.0e-13);
>> +        RealMatrix r = qr.getR();
>> +        Assert.assertEquals(0, r.subtract(rRef).getNorm(), 1.0e-13);
>> +        RealMatrix h = qr.getH();
>> +        Assert.assertEquals(0, h.subtract(hRef).getNorm(), 1.0e-13);
>> +
>> +        // check the same cached instance is returned the second time
>> +        Assert.assertTrue(q == qr.getQ());
>> +        Assert.assertTrue(r == qr.getR());
>> +        Assert.assertTrue(h == qr.getH());
>> +
>> +    }
>> +
>> +    private RealMatrix createTestMatrix(final Random r, final int rows,
>> final int columns) {
>> +        RealMatrix m = MatrixUtils.createRealMatrix(**rows, columns);
>> +        m.walkInOptimizedOrder(new DefaultRealMatrixChangingVisit**or(){
>> +            @Override
>> +            public double visit(int row, int column, double value) {
>> +                return 2.0 * r.nextDouble() - 1.0;
>> +            }
>> +        });
>> +        return m;
>> +    }
>> +
>> +}
>>
>> Added: commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>> math/linear/**PivotingQRSolverTest.java
>> URL: http://svn.apache.org/viewvc/**commons/proper/math/trunk/src/**
>> test/java/org/apache/commons/**math/linear/**
>> PivotingQRSolverTest.java?rev=**1179935&view=auto<http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math/linear/PivotingQRSolverTest.java?rev=1179935&view=auto>
>> ==============================**==============================**
>> ==================
>> --- commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>> math/linear/**PivotingQRSolverTest.java (added)
>> +++ commons/proper/math/trunk/src/**test/java/org/apache/commons/**
>> math/linear/**PivotingQRSolverTest.java Fri Oct  7 05:21:17 2011
>> @@ -0,0 +1,201 @@
>> +/*
>> + * Licensed to the Apache Software Foundation (ASF) under one or more
>> + * contributor license agreements.  See the NOTICE file distributed with
>> + * this work for additional information regarding copyright ownership.
>> + * The ASF licenses this file to You under the Apache License, Version
>> 2.0
>> + * (the "License"); you may not use this file except in compliance with
>> + * the License.  You may obtain a copy of the License at
>> + *
>> + *      
>> http://www.apache.org/**licenses/LICENSE-2.0<http://www.apache.org/licenses/LICENSE-2.0>
>> + *
>> + * Unless required by applicable law or agreed to in writing, software
>> + * distributed under the License is distributed on an "AS IS" BASIS,
>> + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
>> implied.
>> + * See the License for the specific language governing permissions and
>> + * limitations under the License.
>> + */
>> +
>> +package org.apache.commons.math.**linear;
>> +
>> +import java.util.Random;
>> +
>> +import org.apache.commons.math.**ConvergenceException;
>> +import org.apache.commons.math.**exception.**
>> MathIllegalArgumentException;
>> +
>> +import org.junit.Test;
>> +import org.junit.Assert;
>> +
>> +public class PivotingQRSolverTest {
>> +    double[][] testData3x3NonSingular = {
>> +            { 12, -51,   4 },
>> +            {  6, 167, -68 },
>> +            { -4,  24, -41 }
>> +    };
>> +
>> +    double[][] testData3x3Singular = {
>> +            { 1, 2,  2 },
>> +            { 2, 4,  6 },
>> +            { 4, 8, 12 }
>> +    };
>> +
>> +    double[][] testData3x4 = {
>> +            { 12, -51,   4, 1 },
>> +            {  6, 167, -68, 2 },
>> +            { -4,  24, -41, 3 }
>> +    };
>> +
>> +    double[][] testData4x3 = {
>> +            { 12, -51,   4 },
>> +            {  6, 167, -68 },
>> +            { -4,  24, -41 },
>> +            { -5,  34,   7 }
>> +    };
>> +
>> +    /** test rank */
>> +    @Test
>> +    public void testRank() throws ConvergenceException {
>> +        DecompositionSolver solver =
>> +            new PivotingQRDecomposition(**MatrixUtils.createRealMatrix(*
>> *testData3x3NonSingular)).**getSolver();
>> +        Assert.assertTrue(solver.**isNonSingular());
>> +
>> +        solver = new PivotingQRDecomposition(**
>> MatrixUtils.createRealMatrix(**testData3x3Singular)).**getSolver();
>> +        Assert.assertFalse(solver.**isNonSingular());
>> +
>> +        solver = new PivotingQRDecomposition(**
>> MatrixUtils.createRealMatrix(**testData3x4)).getSolver();
>> +        Assert.assertTrue(solver.**isNonSingular());
>> +
>> +        solver = new PivotingQRDecomposition(**
>> MatrixUtils.createRealMatrix(**testData4x3)).getSolver();
>> +        Assert.assertTrue(solver.**isNonSingular());
>> +
>> +    }
>> +
>> +    /** test solve dimension errors */
>> +    @Test
>> +    public void testSolveDimensionErrors() throws ConvergenceException {
>> +        DecompositionSolver solver =
>> +            new PivotingQRDecomposition(**MatrixUtils.createRealMatrix(*
>> *testData3x3NonSingular)).**getSolver();
>> +        RealMatrix b = MatrixUtils.createRealMatrix(**new double[2][2]);
>> +        try {
>> +            solver.solve(b);
>> +            Assert.fail("an exception should have been thrown");
>> +        } catch (MathIllegalArgumentException iae) {
>> +            // expected behavior
>> +        }
>> +        try {
>> +            solver.solve(b.**getColumnVector(0));
>> +            Assert.fail("an exception should have been thrown");
>> +        } catch (MathIllegalArgumentException iae) {
>> +            // expected behavior
>> +        }
>> +    }
>> +
>> +    /** test solve rank errors */
>> +    @Test
>> +    public void testSolveRankErrors() throws ConvergenceException {
>> +        DecompositionSolver solver =
>> +            new PivotingQRDecomposition(**MatrixUtils.createRealMatrix(*
>> *testData3x3Singular)).**getSolver();
>> +        RealMatrix b = MatrixUtils.createRealMatrix(**new double[3][2]);
>> +        try {
>> +            solver.solve(b);
>> +            Assert.fail("an exception should have been thrown");
>> +        } catch (SingularMatrixException iae) {
>> +            // expected behavior
>> +        }
>> +        try {
>> +            solver.solve(b.**getColumnVector(0));
>> +            Assert.fail("an exception should have been thrown");
>> +        } catch (SingularMatrixException iae) {
>> +            // expected behavior
>> +        }
>> +    }
>> +
>> +    /** test solve */
>> +    @Test
>> +    public void testSolve() throws ConvergenceException {
>> +        PivotingQRDecomposition decomposition =
>> +            new PivotingQRDecomposition(**MatrixUtils.createRealMatrix(*
>> *testData3x3NonSingular));
>> +        DecompositionSolver solver = decomposition.getSolver();
>> +        RealMatrix b = MatrixUtils.createRealMatrix(**new double[][] {
>> +                { -102, 12250 }, { 544, 24500 }, { 167, -36750 }
>> +        });
>> +
>> +        RealMatrix xRef = MatrixUtils.createRealMatrix(**new double[][]
>> {
>> +                { 1, 2515 }, { 2, 422 }, { -3, 898 }
>> +        });
>> +
>> +        // using RealMatrix
>> +        Assert.assertEquals(0, solver.solve(b).subtract(xRef)**.getNorm(),
>> 2.0e-14 * xRef.getNorm());
>> +
>> +        // using ArrayRealVector
>> +        for (int i = 0; i<  b.getColumnDimension(); ++i) {
>> +            final RealVector x = solver.solve(b.**getColumnVector(i));
>> +            final double error = x.subtract(xRef.**
>> getColumnVector(i)).getNorm();
>> +            Assert.assertEquals(0, error, 3.0e-14 *
>> xRef.getColumnVector(i).**getNorm());
>> +        }
>> +
>> +        // using RealVector with an alternate implementation
>> +        for (int i = 0; i<  b.getColumnDimension(); ++i) {
>> +            ArrayRealVectorTest.**RealVectorTestImpl v =
>> +                new ArrayRealVectorTest.**RealVectorTestImpl(b.**
>> getColumn(i));
>> +            final RealVector x = solver.solve(v);
>> +            final double error = x.subtract(xRef.**
>> getColumnVector(i)).getNorm();
>> +            Assert.assertEquals(0, error, 3.0e-14 *
>> xRef.getColumnVector(i).**getNorm());
>> +        }
>> +
>> +    }
>> +
>> +    @Test
>> +    public void testOverdetermined() throws ConvergenceException {
>> +        final Random r    = new Random(5559252868205245l);
>> +        int          p    = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        int          q    = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        RealMatrix   a    = createTestMatrix(r, p, q);
>> +        RealMatrix   xRef = createTestMatrix(r, q,
>> BlockRealMatrix.BLOCK_SIZE + 3);
>> +
>> +        // build a perturbed system: A.X + noise = B
>> +        RealMatrix b = a.multiply(xRef);
>> +        final double noise = 0.001;
>> +        b.walkInOptimizedOrder(new DefaultRealMatrixChangingVisit**or()
>> {
>> +            @Override
>> +            public double visit(int row, int column, double value) {
>> +                return value * (1.0 + noise * (2 * r.nextDouble() - 1));
>> +            }
>> +        });
>> +
>> +        // despite perturbation, the least square solution should be
>> pretty good
>> +        RealMatrix x = new PivotingQRDecomposition(a).**
>> getSolver().solve(b);
>> +        Assert.assertEquals(0, x.subtract(xRef).getNorm(), 0.01 * noise *
>> p * q);
>> +
>> +    }
>> +
>> +    @Test
>> +    public void testUnderdetermined() throws ConvergenceException {
>> +        final Random r    = new Random(42185006424567123l);
>> +        int          p    = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        int          q    = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
>> +        RealMatrix   a    = createTestMatrix(r, p, q);
>> +        RealMatrix   xRef = createTestMatrix(r, q,
>> BlockRealMatrix.BLOCK_SIZE + 3);
>> +        RealMatrix   b    = a.multiply(xRef);
>> +        PivotingQRDecomposition pqr = new PivotingQRDecomposition(a);
>> +        RealMatrix   x = pqr.getSolver().solve(b);
>> +        Assert.assertTrue(x.subtract(**xRef).getNorm() / (p * q)>
>>  0.01);
>> +        int count=0;
>> +        for( int i = 0 ; i<  q; i++){
>> +            if(  x.getRowVector(i).getNorm() == 0.0 ){
>> +                ++count;
>> +            }
>> +        }
>> +        Assert.assertEquals("Zeroed rows", q-p, count);
>> +    }
>> +
>> +    private RealMatrix createTestMatrix(final Random r, final int rows,
>> final int columns) {
>> +        RealMatrix m = MatrixUtils.createRealMatrix(**rows, columns);
>> +        m.walkInOptimizedOrder(new DefaultRealMatrixChangingVisit**or()
>> {
>> +                @Override
>> +                    public double visit(int row, int column, double
>> value) {
>> +                    return 2.0 * r.nextDouble() - 1.0;
>> +                }
>> +            });
>> +        return m;
>> +    }
>> +}
>>
>>
>>
>>
>
> ------------------------------**------------------------------**---------
> To unsubscribe, e-mail: 
> dev-unsubscribe@commons.**apache.org<dev-unsubscr...@commons.apache.org>
> For additional commands, e-mail: dev-h...@commons.apache.org
>
>

Reply via email to