This patch implements predictable RSS functionality.

Signed-off-by: Vladimir Medvedkin <vladimir.medved...@intel.com>
---
 lib/librte_hash/rte_thash.c | 610 ++++++++++++++++++++++++++++++++++++++++++--
 1 file changed, 587 insertions(+), 23 deletions(-)

diff --git a/lib/librte_hash/rte_thash.c b/lib/librte_hash/rte_thash.c
index 1325678..c76ceee 100644
--- a/lib/librte_hash/rte_thash.c
+++ b/lib/librte_hash/rte_thash.c
@@ -12,6 +12,45 @@
 #include <rte_malloc.h>
 
 #define THASH_NAME_LEN         64
+#define TOEPLITZ_HASH_LEN      32
+
+#define        RETA_SZ_MIN     2U
+#define        RETA_SZ_MAX     16U
+#define RETA_SZ_IN_RANGE(reta_sz)      ((reta_sz >= RETA_SZ_MIN) && \
+                                       (reta_sz <= RETA_SZ_MAX))
+
+TAILQ_HEAD(rte_thash_list, rte_tailq_entry);
+static struct rte_tailq_elem rte_thash_tailq = {
+       .name = "RTE_THASH",
+};
+EAL_REGISTER_TAILQ(rte_thash_tailq)
+
+/**
+ * Table of some irreducible polinomials over GF(2).
+ * For lfsr they are reperesented in BE bit order, and
+ * x^0 is masked out.
+ * For example, poly x^5 + x^2 + 1 will be represented
+ * as (101001b & 11111b) = 01001b = 0x9
+ */
+static const uint32_t irreducible_poly_table[][4] = {
+       {0, 0, 0, 0},   /** < degree 0 */
+       {1, 1, 1, 1},   /** < degree 1 */
+       {0x3, 0x3, 0x3, 0x3},   /** < degree 2 and so on... */
+       {0x5, 0x3, 0x5, 0x3},
+       {0x9, 0x3, 0x9, 0x3},
+       {0x9, 0x1b, 0xf, 0x5},
+       {0x21, 0x33, 0x1b, 0x2d},
+       {0x41, 0x11, 0x71, 0x9},
+       {0x71, 0xa9, 0xf5, 0x8d},
+       {0x21, 0xd1, 0x69, 0x1d9},
+       {0x81, 0x2c1, 0x3b1, 0x185},
+       {0x201, 0x541, 0x341, 0x461},
+       {0x941, 0x609, 0xe19, 0x45d},
+       {0x1601, 0x1f51, 0x1171, 0x359},
+       {0x2141, 0x2111, 0x2db1, 0x2109},
+       {0x4001, 0x801, 0x101, 0x7301},
+       {0x7781, 0xa011, 0x4211, 0x86d9},
+};
 
 struct thash_lfsr {
        uint32_t        ref_cnt;
@@ -50,60 +89,585 @@ struct rte_thash_ctx {
        uint8_t         hash_key[0];
 };
 
+static inline uint32_t
+get_bit_lfsr(struct thash_lfsr *lfsr)
+{
+       uint32_t bit, ret;
+
+       /*
+        * masking the TAP bits defined by the polynomial and
+        * calculating parity
+        */
+       bit = __builtin_popcount(lfsr->state & lfsr->poly) & 0x1;
+       ret = lfsr->state & 0x1;
+       lfsr->state = ((lfsr->state >> 1) | (bit << (lfsr->deg - 1))) &
+               ((1 << lfsr->deg) - 1);
+
+       lfsr->bits_cnt++;
+       return ret;
+}
+
+static inline uint32_t
+get_rev_bit_lfsr(struct thash_lfsr *lfsr)
+{
+       uint32_t bit, ret;
+
+       bit = __builtin_popcount(lfsr->rev_state & lfsr->rev_poly) & 0x1;
+       ret = lfsr->rev_state & (1 << (lfsr->deg - 1));
+       lfsr->rev_state = ((lfsr->rev_state << 1) | bit) &
+               ((1 << lfsr->deg) - 1);
+
+       lfsr->bits_cnt++;
+       return ret;
+}
+
+static inline uint32_t
+thash_get_rand_poly(uint32_t poly_degree)
+{
+       return irreducible_poly_table[poly_degree][rte_rand() %
+               RTE_DIM(irreducible_poly_table[poly_degree])];
+}
+
+static struct thash_lfsr *
+alloc_lfsr(struct rte_thash_ctx *ctx)
+{
+       struct thash_lfsr *lfsr;
+       uint32_t i;
+
+       if (ctx == NULL)
+               return NULL;
+
+       lfsr = rte_zmalloc(NULL, sizeof(struct thash_lfsr), 0);
+       if (lfsr == NULL)
+               return NULL;
+
+       lfsr->deg = ctx->reta_sz_log;
+       lfsr->poly = thash_get_rand_poly(lfsr->deg);
+       do {
+               lfsr->state = rte_rand() & ((1 << lfsr->deg) - 1);
+       } while (lfsr->state == 0);
+       /* init reverse order polynomial */
+       lfsr->rev_poly = (lfsr->poly >> 1) | (1 << (lfsr->deg - 1));
+       /* init proper rev_state*/
+       lfsr->rev_state = lfsr->state;
+       for (i = 0; i <= lfsr->deg; i++)
+               get_rev_bit_lfsr(lfsr);
+
+       /* clear bits_cnt after rev_state was inited */
+       lfsr->bits_cnt = 0;
+       lfsr->ref_cnt = 1;
+
+       return lfsr;
+}
+
+static void
+attach_lfsr(struct rte_thash_subtuple_helper *h, struct thash_lfsr *lfsr)
+{
+       lfsr->ref_cnt++;
+       h->lfsr = lfsr;
+}
+
+static void
+free_lfsr(struct thash_lfsr *lfsr)
+{
+       lfsr->ref_cnt--;
+       if (lfsr->ref_cnt == 0)
+               rte_free(lfsr);
+}
+
 struct rte_thash_ctx *
-rte_thash_init_ctx(const char *name __rte_unused,
-       uint32_t key_len __rte_unused, uint32_t reta_sz __rte_unused,
-       uint8_t *key __rte_unused, uint32_t flags __rte_unused)
+rte_thash_init_ctx(const char *name, uint32_t key_len, uint32_t reta_sz,
+       uint8_t *key, uint32_t flags)
 {
+       struct rte_thash_ctx *ctx;
+       struct rte_tailq_entry *te;
+       struct rte_thash_list *thash_list;
+       uint32_t i;
+
+       if ((name == NULL) || (key_len == 0) || !RETA_SZ_IN_RANGE(reta_sz)) {
+               rte_errno = EINVAL;
+               return NULL;
+       }
+
+       thash_list = RTE_TAILQ_CAST(rte_thash_tailq.head, rte_thash_list);
+
+       rte_mcfg_tailq_write_lock();
+
+       /* guarantee there's no existing */
+       TAILQ_FOREACH(te, thash_list, next) {
+               ctx = (struct rte_thash_ctx *)te->data;
+               if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0)
+                       break;
+       }
+       ctx = NULL;
+       if (te != NULL) {
+               rte_errno = EEXIST;
+               goto exit;
+       }
+
+       /* allocate tailq entry */
+       te = rte_zmalloc("THASH_TAILQ_ENTRY", sizeof(*te), 0);
+       if (te == NULL) {
+               RTE_LOG(ERR, HASH,
+                       "Can not allocate tailq entry for thash context %s\n",
+                       name);
+               rte_errno = ENOMEM;
+               goto exit;
+       }
+
+       ctx = rte_zmalloc(NULL, sizeof(struct rte_thash_ctx) + key_len, 0);
+       if (ctx == NULL) {
+               RTE_LOG(ERR, HASH, "thash ctx %s memory allocation failed\n",
+                       name);
+               rte_errno = ENOMEM;
+               goto free_te;
+       }
+
+       rte_strlcpy(ctx->name, name, sizeof(ctx->name));
+       ctx->key_len = key_len;
+       ctx->reta_sz_log = reta_sz;
+       LIST_INIT(&ctx->head);
+       ctx->flags = flags;
+
+       if (key)
+               rte_memcpy(ctx->hash_key, key, key_len);
+       else {
+               for (i = 0; i < key_len; i++)
+                       ctx->hash_key[i] = rte_rand();
+       }
+
+       te->data = (void *)ctx;
+       TAILQ_INSERT_TAIL(thash_list, te, next);
+
+       rte_mcfg_tailq_write_unlock();
+
+       return ctx;
+free_te:
+       rte_free(te);
+exit:
+       rte_mcfg_tailq_write_unlock();
        return NULL;
 }
 
 struct rte_thash_ctx *
-rte_thash_find_existing(const char *name __rte_unused)
+rte_thash_find_existing(const char *name)
 {
-       return NULL;
+       struct rte_thash_ctx *ctx;
+       struct rte_tailq_entry *te;
+       struct rte_thash_list *thash_list;
+
+       thash_list = RTE_TAILQ_CAST(rte_thash_tailq.head, rte_thash_list);
+
+       rte_mcfg_tailq_read_lock();
+       TAILQ_FOREACH(te, thash_list, next) {
+               ctx = (struct rte_thash_ctx *)te->data;
+               if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0)
+                       break;
+       }
+
+       rte_mcfg_tailq_read_unlock();
+
+       if (te == NULL) {
+               rte_errno = ENOENT;
+               return NULL;
+       }
+
+       return ctx;
 }
 
 void
-rte_thash_free_ctx(struct rte_thash_ctx *ctx __rte_unused)
+rte_thash_free_ctx(struct rte_thash_ctx *ctx)
 {
+       struct rte_tailq_entry *te;
+       struct rte_thash_list *thash_list;
+       struct rte_thash_subtuple_helper *ent, *tmp;
+
+       if (ctx == NULL)
+               return;
+
+       thash_list = RTE_TAILQ_CAST(rte_thash_tailq.head, rte_thash_list);
+       rte_mcfg_tailq_write_lock();
+       TAILQ_FOREACH(te, thash_list, next) {
+               if (te->data == (void *)ctx)
+                       break;
+       }
+
+       if (te != NULL)
+               TAILQ_REMOVE(thash_list, te, next);
+
+       rte_mcfg_tailq_write_unlock();
+       ent = LIST_FIRST(&(ctx->head));
+       while (ent) {
+               free_lfsr(ent->lfsr);
+               tmp = ent;
+               ent = LIST_NEXT(ent, next);
+               LIST_REMOVE(tmp, next);
+               rte_free(tmp);
+       }
+
+       rte_free(ctx);
+       rte_free(te);
+}
+
+static inline void
+set_bit(uint8_t *ptr, uint32_t bit, uint32_t pos)
+{
+       uint32_t byte_idx = pos / CHAR_BIT;
+       uint32_t bit_idx = (CHAR_BIT - 1) - (pos & (CHAR_BIT - 1));
+       uint8_t tmp;
+
+       tmp = ptr[byte_idx];
+       tmp &= ~(1 << bit_idx);
+       tmp |= bit << bit_idx;
+       ptr[byte_idx] = tmp;
+}
+
+/**
+ * writes m-sequence to the hash_key for range [start, end]
+ * (i.e. including start and end positions)
+ */
+static int
+generate_subkey(struct rte_thash_ctx *ctx, struct thash_lfsr *lfsr,
+       uint32_t start, uint32_t end)
+{
+       uint32_t i;
+       uint32_t req_bits = (start < end) ? (end - start) : (start - end);
+       req_bits++; /* due to incuding end */
+
+       /* check if lfsr overflow period of the m-sequence */
+       if (((lfsr->bits_cnt + req_bits) > (1ULL << lfsr->deg) - 1) &&
+                       ((ctx->flags & RTE_THASH_IGNORE_PERIOD_OVERFLOW) !=
+                       RTE_THASH_IGNORE_PERIOD_OVERFLOW))
+               return -ENOSPC;
+
+       if (start < end) {
+               /* original direction (from left to right)*/
+               for (i = start; i <= end; i++)
+                       set_bit(ctx->hash_key, get_bit_lfsr(lfsr), i);
+
+       } else {
+               /* reverse direction (from right to left) */
+               for (i = end; i >= start; i--)
+                       set_bit(ctx->hash_key, get_rev_bit_lfsr(lfsr), i);
+       }
+
+       return 0;
+}
+
+static inline uint32_t
+get_subvalue(struct rte_thash_ctx *ctx, uint32_t offset)
+{
+       uint32_t *tmp, val;
+
+       tmp = (uint32_t *)(&ctx->hash_key[offset >> 3]);
+       val = rte_be_to_cpu_32(*tmp);
+       val >>= (TOEPLITZ_HASH_LEN - ((offset & (CHAR_BIT - 1)) +
+               ctx->reta_sz_log));
+
+       return val & ((1 << ctx->reta_sz_log) - 1);
+}
+
+static inline void
+generate_complement_table(struct rte_thash_ctx *ctx,
+       struct rte_thash_subtuple_helper *h)
+{
+       int i, j, k;
+       uint32_t val;
+       uint32_t start;
+
+       start = h->offset + h->len - (2 * ctx->reta_sz_log - 1);
+
+       for (i = 1; i < (1 << ctx->reta_sz_log); i++) {
+               val = 0;
+               for (j = i; j; j &= (j - 1)) {
+                       k = rte_bsf32(j);
+                       val ^= get_subvalue(ctx, start - k +
+                               ctx->reta_sz_log - 1);
+               }
+               h->compl_table[val] = i;
+       }
+}
+
+static inline int
+insert_before(struct rte_thash_ctx *ctx,
+       struct rte_thash_subtuple_helper *ent,
+       struct rte_thash_subtuple_helper *cur_ent,
+       struct rte_thash_subtuple_helper *next_ent,
+       uint32_t start, uint32_t end, uint32_t range_end)
+{
+       int ret;
+
+       if (end < cur_ent->offset) {
+               ent->lfsr = alloc_lfsr(ctx);
+               if (ent->lfsr == NULL) {
+                       rte_free(ent);
+                       return -ENOMEM;
+               }
+               /* generate nonoverlapping range [start, end) */
+               ret = generate_subkey(ctx, ent->lfsr, start, end - 1);
+               if (ret != 0) {
+                       free_lfsr(ent->lfsr);
+                       rte_free(ent);
+                       return ret;
+               }
+       } else if ((next_ent != NULL) && (end > next_ent->offset)) {
+               rte_free(ent);
+               return -ENOSPC;
+       }
+       attach_lfsr(ent, cur_ent->lfsr);
+
+       /**
+        * generate partially overlapping range
+        * [start, cur_ent->start) in reverse order
+        */
+       ret = generate_subkey(ctx, ent->lfsr, cur_ent->offset - 1, start);
+       if (ret != 0) {
+               free_lfsr(ent->lfsr);
+               rte_free(ent);
+               return ret;
+       }
+
+       if (end > range_end) {
+               /**
+                * generate partially overlapping range
+                * (range_end, end)
+                */
+               ret = generate_subkey(ctx, ent->lfsr, range_end, end - 1);
+               if (ret != 0) {
+                       free_lfsr(ent->lfsr);
+                       rte_free(ent);
+                       return ret;
+               }
+       }
+
+       LIST_INSERT_BEFORE(cur_ent, ent, next);
+       generate_complement_table(ctx, ent);
+       ctx->subtuples_nb++;
+       return 0;
+}
+
+static inline int
+insert_after(struct rte_thash_ctx *ctx,
+       struct rte_thash_subtuple_helper *ent,
+       struct rte_thash_subtuple_helper *cur_ent,
+       struct rte_thash_subtuple_helper *next_ent,
+       struct rte_thash_subtuple_helper *prev_ent,
+       uint32_t end, uint32_t range_end)
+{
+       int ret;
+
+       if ((next_ent != NULL) && (end > next_ent->offset)) {
+               rte_free(ent);
+               return -EEXIST;
+       }
+
+       attach_lfsr(ent, cur_ent->lfsr);
+       if (end > range_end) {
+               /**
+                * generate partially overlapping range
+                * (range_end, end)
+                */
+               ret = generate_subkey(ctx, ent->lfsr, range_end, end - 1);
+               if (ret != 0) {
+                       free_lfsr(ent->lfsr);
+                       rte_free(ent);
+                       return ret;
+               }
+       }
+
+       LIST_INSERT_AFTER(prev_ent, ent, next);
+       generate_complement_table(ctx, ent);
+       ctx->subtuples_nb++;
+
+       return 0;
 }
 
 int
-rte_thash_add_helper(struct rte_thash_ctx *ctx __rte_unused,
-       const char *name __rte_unused, uint32_t len __rte_unused,
-       uint32_t offset __rte_unused)
+rte_thash_add_helper(struct rte_thash_ctx *ctx, const char *name, uint32_t len,
+       uint32_t offset)
 {
+       struct rte_thash_subtuple_helper *ent, *cur_ent, *prev_ent, *next_ent;
+       uint32_t start, end;
+       int ret;
+
+       if ((ctx == NULL) || (name == NULL) || (len < ctx->reta_sz_log) ||
+                       ((offset + len + TOEPLITZ_HASH_LEN - 1) >
+                       ctx->key_len * CHAR_BIT))
+               return -EINVAL;
+
+       /* Check for existing name*/
+       LIST_FOREACH(cur_ent, &ctx->head, next) {
+               if (strncmp(name, cur_ent->name, sizeof(cur_ent->name)) == 0)
+                       return -EEXIST;
+       }
+
+       end = offset + len + TOEPLITZ_HASH_LEN - 1;
+       start = ((ctx->flags & RTE_THASH_MINIMAL_SEQ) ==
+               RTE_THASH_MINIMAL_SEQ) ? (end - (2 * ctx->reta_sz_log - 1)) :
+               offset;
+
+       ent = rte_zmalloc(NULL, sizeof(struct rte_thash_subtuple_helper) +
+               sizeof(uint32_t) * (1 << ctx->reta_sz_log),
+               RTE_CACHE_LINE_SIZE);
+       if (ent == NULL)
+               return -ENOMEM;
+
+       rte_strlcpy(ent->name, name, sizeof(ent->name));
+       ent->offset = start;
+       ent->len = end - start;
+       ent->tuple_offset = offset;
+       ent->tuple_len = len;
+       ent->lsb_msk = (1 << ctx->reta_sz_log) - 1;
+
+       cur_ent = LIST_FIRST(&ctx->head);
+       while (cur_ent) {
+               uint32_t range_end = cur_ent->offset + cur_ent->len;
+               next_ent = LIST_NEXT(cur_ent, next);
+               prev_ent = cur_ent;
+               /* Iterate through overlapping ranges */
+               while ((next_ent != NULL) && (next_ent->offset < range_end)) {
+                       range_end = RTE_MAX(next_ent->offset + next_ent->len,
+                               range_end);
+                       if (start > next_ent->offset)
+                               prev_ent = next_ent;
+
+                       next_ent = LIST_NEXT(next_ent, next);
+               }
+
+               if (start < cur_ent->offset)
+                       return insert_before(ctx, ent, cur_ent, next_ent,
+                               start, end, range_end);
+               else if (start < range_end)
+                       return insert_after(ctx, ent, cur_ent, next_ent,
+                               prev_ent, end, range_end);
+
+               cur_ent = next_ent;
+               continue;
+       }
+
+       ent->lfsr = alloc_lfsr(ctx);
+       if (ent->lfsr == NULL) {
+               rte_free(ent);
+               return -ENOMEM;
+       }
+
+       /* generate nonoverlapping range [start, end) */
+       ret = generate_subkey(ctx, ent->lfsr, start, end - 1);
+       if (ret != 0) {
+               free_lfsr(ent->lfsr);
+               rte_free(ent);
+               return ret;
+       }
+       if (LIST_EMPTY(&ctx->head)) {
+               LIST_INSERT_HEAD(&ctx->head, ent, next);
+       } else {
+               LIST_FOREACH(next_ent, &ctx->head, next)
+                       prev_ent = next_ent;
+
+               LIST_INSERT_AFTER(prev_ent, ent, next);
+       }
+       generate_complement_table(ctx, ent);
+       ctx->subtuples_nb++;
+
        return 0;
 }
 
 struct rte_thash_subtuple_helper *
-rte_thash_get_helper(struct rte_thash_ctx *ctx __rte_unused,
-       const char *name __rte_unused)
+rte_thash_get_helper(struct rte_thash_ctx *ctx, const char *name)
 {
+       struct rte_thash_subtuple_helper *ent;
+
+       if ((ctx == NULL) || (name == NULL))
+               return NULL;
+
+       LIST_FOREACH(ent, &ctx->head, next) {
+               if (strncmp(name, ent->name, sizeof(ent->name)) == 0)
+                       return ent;
+       }
+
        return NULL;
 }
 
 uint32_t
-rte_thash_get_complement(struct rte_thash_subtuple_helper *h __rte_unused,
-       uint32_t hash __rte_unused, uint32_t desired_hash __rte_unused)
+rte_thash_get_complement(struct rte_thash_subtuple_helper *h,
+       uint32_t hash, uint32_t desired_hash)
 {
-       return 0;
+       return h->compl_table[(hash ^ desired_hash) & h->lsb_msk];
 }
 
 const uint8_t *
-rte_thash_get_key(struct rte_thash_ctx *ctx __rte_unused)
+rte_thash_get_key(struct rte_thash_ctx *ctx)
 {
-       return NULL;
+       return ctx->hash_key;
+}
+
+static inline void
+xor_bit(uint8_t *ptr, uint32_t bit, uint32_t pos)
+{
+       uint32_t byte_idx = pos >> 3;
+       uint32_t bit_idx = (CHAR_BIT - 1) - (pos & (CHAR_BIT - 1));
+       uint8_t tmp;
+
+       tmp = ptr[byte_idx];
+       tmp ^= bit << bit_idx;
+       ptr[byte_idx] = tmp;
 }
 
 int
-rte_thash_adjust_tuple(struct rte_thash_ctx *ctx __rte_unused,
-       struct rte_thash_subtuple_helper *h __rte_unused,
-       uint8_t *tuple __rte_unused, unsigned int tuple_len __rte_unused,
-       uint32_t desired_value __rte_unused,
-       unsigned int attempts __rte_unused,
-       rte_thash_check_tuple_t fn __rte_unused, void *userdata __rte_unused)
+rte_thash_adjust_tuple(struct rte_thash_ctx *ctx,
+       struct rte_thash_subtuple_helper *h,
+       uint8_t *tuple, unsigned int tuple_len,
+       uint32_t desired_value, unsigned int attempts,
+       rte_thash_check_tuple_t fn, void *userdata)
 {
-       return 0;
+       uint32_t tmp_tuple[tuple_len / sizeof(uint32_t)];
+       unsigned int i, j, ret = 0;
+       uint32_t hash, adj_bits;
+       uint8_t bit;
+       const uint8_t *hash_key;
+
+       if ((ctx == NULL) || (h == NULL) || (tuple == NULL) ||
+                       (tuple_len % sizeof(uint32_t) != 0) || (attempts <= 0))
+               return -EINVAL;
+
+       hash_key = rte_thash_get_key(ctx);
+
+       for (i = 0; i < attempts; i++) {
+               for (j = 0; j < (tuple_len / 4); j++)
+                       tmp_tuple[j] =
+                               rte_be_to_cpu_32(*(uint32_t *)&tuple[j * 4]);
+
+               hash = rte_softrss(tmp_tuple, tuple_len / 4, hash_key);
+               adj_bits = rte_thash_get_complement(h, hash, desired_value);
+
+               /*
+                * Hint: LSB of adj_bits corresponds to
+                * offset + len bit of tuple
+                */
+               for (j = 0; j < sizeof(uint32_t) * CHAR_BIT; j++) {
+                       bit = (adj_bits >> j) & 0x1;
+                       if (bit)
+                               xor_bit(tuple, bit, h->tuple_offset +
+                                       h->tuple_len - 1 - j);
+               }
+
+               if (fn != NULL) {
+                       ret = (fn(userdata, tuple)) ? 0 : -EEXIST;
+                       if (ret == 0)
+                               return 0;
+                       else if (i < (attempts - 1)) {
+                               /* Update tuple with random bits */
+                               for (j = 0; j < h->tuple_len; j++) {
+                                       bit = rte_rand() & 0x1;
+                                       if (bit)
+                                               xor_bit(tuple, bit,
+                                                       h->tuple_offset +
+                                                       h->tuple_len - 1 - j);
+                               }
+                       }
+               } else
+                       return 0;
+       }
+
+       return ret;
 }
-- 
2.7.4

Reply via email to