> -----Original Message-----
> From: Huang, Wei <wei.hu...@intel.com>
> Sent: Thursday, June 9, 2022 3:37 PM
> To: dev@dpdk.org; tho...@monjalon.net; nipun.gu...@nxp.com;
> hemant.agra...@nxp.com
> Cc: sta...@dpdk.org; Xu, Rosen <rosen...@intel.com>; Zhang, Tianfei
> <tianfei.zh...@intel.com>; Zhang, Qi Z <qi.z.zh...@intel.com>; Huang, Wei
> <wei.hu...@intel.com>
> Subject: [PATCH v7 2/5] raw/ifpga: add N3000 AFU driver
> 
> N3000 AFU includes NLB0 and DMA modules, NLB0 is used to test PCI bus
> and DMA is used to test local memory.
> This driver initialize the modules and report test result.
> 
> Signed-off-by: Wei Huang <wei.hu...@intel.com>
> ---
> v2: move source files to ifpga and rename, refine code
> ---
> v3: fix Ubuntu 20.04 ARM build
> ---
>  drivers/raw/ifpga/afu_pmd_core.h  |   19 +
>  drivers/raw/ifpga/afu_pmd_n3000.c | 2019
> +++++++++++++++++++++++++++++++++++++
>  drivers/raw/ifpga/afu_pmd_n3000.h |  339 +++++++
>  drivers/raw/ifpga/meson.build     |    3 +-
>  drivers/raw/ifpga/rte_pmd_afu.h   |   97 ++
>  5 files changed, 2476 insertions(+), 1 deletion(-)
>  create mode 100644 drivers/raw/ifpga/afu_pmd_n3000.c
>  create mode 100644 drivers/raw/ifpga/afu_pmd_n3000.h
>  create mode 100644 drivers/raw/ifpga/rte_pmd_afu.h
> 
> diff --git a/drivers/raw/ifpga/afu_pmd_core.h
> b/drivers/raw/ifpga/afu_pmd_core.h
> index 4fad2c7..a938172 100644
> --- a/drivers/raw/ifpga/afu_pmd_core.h
> +++ b/drivers/raw/ifpga/afu_pmd_core.h
> @@ -14,6 +14,7 @@
>  #include <unistd.h>
> 
>  #include <rte_spinlock.h>
> +#include <rte_cycles.h>
>  #include <rte_bus_ifpga.h>
>  #include <rte_rawdev.h>
> 
> @@ -60,6 +61,24 @@ struct afu_rawdev {
>       return rawdev ? (struct afu_rawdev *)rawdev->dev_private : NULL;
>  }
> 
> +#define CLS_TO_SIZE(n)  ((n) << 6)  /* get size of n cache lines */
> +#define SIZE_TO_CLS(s)  ((s) >> 6)  /* convert size to number of cache lines 
> */
> +#define MHZ(f)  ((f) * 1000000)
> +
> +#define dsm_poll_timeout(addr, val, cond, invl, timeout) \
> +({                                                       \
> +     uint64_t __wait = 0;                                 \
> +     uint64_t __invl = (invl);                            \
> +     uint64_t __timeout = (timeout);                      \
> +     for (; __wait <= __timeout; __wait += __invl) {      \
> +             (val) = *(addr);                                 \
> +             if (cond)                                        \
> +                     break;                                       \
> +             rte_delay_ms(__invl);                            \
> +     }                                                    \
> +     (cond) ? 0 : 1;                                      \
> +})
> +
>  void afu_pmd_register(struct afu_rawdev_drv *driver);
>  void afu_pmd_unregister(struct afu_rawdev_drv *driver);
> 
> diff --git a/drivers/raw/ifpga/afu_pmd_n3000.c
> b/drivers/raw/ifpga/afu_pmd_n3000.c
> new file mode 100644
> index 0000000..14f7fe0
> --- /dev/null
> +++ b/drivers/raw/ifpga/afu_pmd_n3000.c
> @@ -0,0 +1,2019 @@
> +/* SPDX-License-Identifier: BSD-3-Clause
> + * Copyright(c) 2022 Intel Corporation
> + */
> +
> +#include <errno.h>
> +#include <stdio.h>
> +#include <stdint.h>
> +#include <stdlib.h>
> +#include <inttypes.h>
> +#include <unistd.h>
> +#include <fcntl.h>
> +#include <poll.h>
> +#include <sys/eventfd.h>
> +#include <sys/ioctl.h>
> +
> +#include <rte_eal.h>
> +#include <rte_malloc.h>
> +#include <rte_memcpy.h>
> +#include <rte_io.h>
> +#include <rte_vfio.h>
> +#include <rte_bus_pci.h>
> +#include <rte_bus_ifpga.h>
> +#include <rte_rawdev.h>
> +
> +#include "afu_pmd_core.h"
> +#include "afu_pmd_n3000.h"
> +
> +static int nlb_afu_config(struct afu_rawdev *dev)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     struct rte_pmd_afu_nlb_cfg *cfg = NULL;
> +     struct nlb_csr_cfg v;
> +
> +     if (!dev)
> +             return -EINVAL;
> +
> +     if (!dev->priv)
> +             return -ENOENT;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +     cfg = &priv->nlb_cfg;
> +
> +     v.csr = 0;
> +
> +     if (cfg->cont)
> +             v.cont = 1;
> +
> +     if (cfg->cache_policy == NLB_WRPUSH_I)
> +             v.wrpush_i = 1;
> +     else
> +             v.wrthru_en = cfg->cache_policy;
> +
> +     if (cfg->cache_hint == NLB_RDLINE_MIXED)
> +             v.rdsel = 3;
> +     else
> +             v.rdsel = cfg->cache_hint;
> +
> +     v.mode = cfg->mode;
> +     v.chsel = cfg->read_vc;
> +     v.wr_chsel = cfg->write_vc;
> +     v.wrfence_chsel = cfg->wrfence_vc;
> +     v.wrthru_en = cfg->cache_policy;
> +     v.multicl_len = cfg->multi_cl - 1;
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("cfg: 0x%08x", v.csr);
> +     rte_write32(v.csr, priv->nlb_ctx.addr + CSR_CFG);
> +
> +     return 0;
> +}
> +
> +static void nlb_afu_report(struct afu_rawdev *dev, uint32_t cl)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     struct rte_pmd_afu_nlb_cfg *cfg = NULL;
> +     struct nlb_dsm_status *stat = NULL;
> +     uint64_t ticks = 0;
> +     double num, rd_bw, wr_bw;
> +
> +     if (!dev || !dev->priv)
> +             return;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +
> +     cfg = &priv->nlb_cfg;
> +     stat = priv->nlb_ctx.status_ptr;
> +
> +     if (cfg->cont)
> +             ticks = stat->num_clocks - stat->start_overhead;
> +     else
> +             ticks = stat->num_clocks -
> +                     (stat->start_overhead + stat->end_overhead);
> +
> +     if (cfg->freq_mhz == 0)
> +             cfg->freq_mhz = 200;
> +
> +     num = (double)stat->num_reads;
> +     rd_bw = (num * CLS_TO_SIZE(1) * MHZ(cfg->freq_mhz)) / ticks;
> +     num = (double)stat->num_writes;
> +     wr_bw = (num * CLS_TO_SIZE(1) * MHZ(cfg->freq_mhz)) / ticks;
> +
> +     printf("Cachelines  Read_Count Write_Count Clocks@%uMHz   "
> +             "Rd_Bandwidth   Wr_Bandwidth\n", cfg->freq_mhz);
> +     printf("%10u  %10u %11u  %12"PRIu64"   %7.3f GB/s   %7.3f GB/s\n",
> +             cl, stat->num_reads, stat->num_writes, ticks,
> +             rd_bw / 1e9, wr_bw / 1e9);
> +}
> +
> +static int nlb_afu_test(struct afu_rawdev *dev)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     struct nlb_afu_ctx *ctx = NULL;
> +     struct rte_pmd_afu_nlb_cfg *cfg = NULL;
> +     struct nlb_csr_ctl ctl;
> +     uint32_t *ptr = NULL;
> +     uint32_t i, j, cl, val = 0;
> +     uint64_t sval = 0;
> +     int ret = 0;
> +
> +     if (!dev)
> +             return -EINVAL;
> +
> +     if (!dev->priv)
> +             return -ENOENT;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +     ctx = &priv->nlb_ctx;
> +     cfg = &priv->nlb_cfg;
> +
> +     /* initialize registers */
> +     IFPGA_RAWDEV_PMD_DEBUG("dsm_addr: 0x%"PRIx64, ctx-
> >dsm_iova);
> +     rte_write64(ctx->dsm_iova, ctx->addr + CSR_AFU_DSM_BASEL);
> +
> +     ctl.csr = 0;
> +     rte_write32(ctl.csr, ctx->addr + CSR_CTL);
> +     ctl.reset = 1;
> +     rte_write32(ctl.csr, ctx->addr + CSR_CTL);
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("src_addr: 0x%"PRIx64, ctx->src_iova);
> +     rte_write64(SIZE_TO_CLS(ctx->src_iova), ctx->addr + CSR_SRC_ADDR);
> +     IFPGA_RAWDEV_PMD_DEBUG("dst_addr: 0x%"PRIx64, ctx->dest_iova);
> +     rte_write64(SIZE_TO_CLS(ctx->dest_iova), ctx->addr + CSR_DST_ADDR);
> +
> +     ret = nlb_afu_config(dev);
> +     if (ret)
> +             return ret;
> +
> +     /* initialize src data */
> +     ptr = (uint32_t *)ctx->src_ptr;
> +     j = CLS_TO_SIZE(cfg->end) >> 2;
> +     for (i = 0; i < j; i++)
> +             *ptr++ = i;
> +
> +     /* start test */
> +     for (cl = cfg->begin; cl <= cfg->end; cl += cfg->multi_cl) {
> +             memset(ctx->dest_ptr, 0, CLS_TO_SIZE(cl));
> +             memset(ctx->dsm_ptr, 0, DSM_SIZE);
> +
> +             ctl.csr = 0;
> +             rte_write32(ctl.csr, ctx->addr + CSR_CTL);
> +             ctl.reset = 1;
> +             rte_write32(ctl.csr, ctx->addr + CSR_CTL);
> +
> +             rte_write32(cl, ctx->addr + CSR_NUM_LINES);
> +
> +             rte_delay_us(10);
> +
> +             ctl.start = 1;
> +             rte_write32(ctl.csr, ctx->addr + CSR_CTL);
> +
> +             if (cfg->cont) {
> +                     rte_delay_ms(cfg->timeout * 1000);
> +                     ctl.force_completion = 1;
> +                     rte_write32(ctl.csr, ctx->addr + CSR_CTL);
> +                     ret = dsm_poll_timeout(&ctx->status_ptr-
> >test_complete,
> +                             val, (val & 0x1) == 1, DSM_POLL_INTERVAL,
> +                             DSM_TIMEOUT);
> +                     if (ret) {
> +                             printf("DSM poll timeout\n");
> +                             goto end;
> +                     }
> +             } else {
> +                     ret = dsm_poll_timeout(&ctx->status_ptr-
> >test_complete,
> +                             val, (val & 0x1) == 1, DSM_POLL_INTERVAL,
> +                             DSM_TIMEOUT);
> +                     if (ret) {
> +                             printf("DSM poll timeout\n");
> +                             goto end;
> +                     }
> +                     ctl.force_completion = 1;
> +                     rte_write32(ctl.csr, ctx->addr + CSR_CTL);
> +             }
> +
> +             nlb_afu_report(dev, cl);
> +
> +             i = 0;
> +             while (i++ < 100) {
> +                     sval = rte_read64(ctx->addr + CSR_STATUS1);
> +                     if (sval == 0)
> +                             break;
> +                     rte_delay_us(1000);
> +             }
> +
> +             ptr = (uint32_t *)ctx->dest_ptr;
> +             j = CLS_TO_SIZE(cl) >> 2;
> +             for (i = 0; i < j; i++) {
> +                     if (*ptr++ != i) {
> +                             IFPGA_RAWDEV_PMD_ERR("Data mismatch @
> %u", i);
> +                             break;
> +                     }
> +             }
> +     }
> +
> +end:
> +     return ret;
> +}
> +
> +static void dma_afu_buf_free(struct dma_afu_ctx *ctx)
> +{
> +     int i = 0;
> +
> +     if (!ctx)
> +             return;
> +
> +     for (i = 0; i < NUM_DMA_BUF; i++) {
> +             rte_free(ctx->dma_buf[i]);
> +             ctx->dma_buf[i] = NULL;
> +     }
> +
> +     rte_free(ctx->data_buf);
> +     ctx->data_buf = NULL;
> +
> +     rte_free(ctx->ref_buf);
> +     ctx->ref_buf = NULL;
> +}
> +
> +static int dma_afu_buf_alloc(struct dma_afu_ctx *ctx,
> +     struct rte_pmd_afu_dma_cfg *cfg)
> +{
> +     size_t page_sz = sysconf(_SC_PAGE_SIZE);
> +     int i, ret = 0;
> +
> +     if (!ctx || !cfg)
> +             return -EINVAL;
> +
> +     for (i = 0; i < NUM_DMA_BUF; i++) {
> +             ctx->dma_buf[i] = (uint64_t *)rte_zmalloc(NULL, cfg->size,
> +                     TEST_MEM_ALIGN);
> +             if (!ctx->dma_buf[i]) {
> +                     ret = -ENOMEM;
> +                     goto free_dma_buf;
> +             }
> +             ctx->dma_iova[i] = rte_malloc_virt2iova(ctx->dma_buf[i]);
> +             if (ctx->dma_iova[i] == RTE_BAD_IOVA) {
> +                     ret = -ENOMEM;
> +                     goto free_dma_buf;
> +             }
> +     }
> +
> +     ctx->data_buf = rte_malloc(NULL, cfg->length, page_sz);
> +     if (!ctx->data_buf) {
> +             ret = -ENOMEM;
> +             goto free_dma_buf;
> +     }
> +
> +     ctx->ref_buf = rte_malloc(NULL, cfg->length, page_sz);
> +     if (!ctx->ref_buf) {
> +             ret = -ENOMEM;
> +             goto free_data_buf;
> +     }
> +
> +     return 0;
> +
> +free_data_buf:
> +     rte_free(ctx->data_buf);
> +     ctx->data_buf = NULL;
> +free_dma_buf:
> +     for (i = 0; i < NUM_DMA_BUF; i++) {
> +             rte_free(ctx->dma_buf[i]);
> +             ctx->dma_buf[i] = NULL;
> +     }
> +     return ret;
> +}
> +
> +static void dma_afu_buf_init(struct dma_afu_ctx *ctx, size_t size)
> +{
> +     int *ptr = NULL;
> +     size_t i = 0;
> +     size_t dword_size = 0;
> +
> +     if (!ctx || !size)
> +             return;
> +
> +     ptr = (int *)ctx->ref_buf;
> +
> +     if (ctx->pattern) {
> +             memset(ptr, ctx->pattern, size);
> +     } else {
> +             srand(99);
> +             dword_size = size >> 2;
> +             for (i = 0; i < dword_size; i++)
> +                     *ptr++ = rand();
> +     }
> +     rte_memcpy(ctx->data_buf, ctx->ref_buf, size);
> +}
> +
> +static int dma_afu_buf_verify(struct dma_afu_ctx *ctx, size_t size)
> +{
> +     uint8_t *src = NULL;
> +     uint8_t *dst = NULL;
> +     size_t i = 0;
> +     int n = 0;
> +
> +     if (!ctx || !size)
> +             return -EINVAL;
> +
> +     src = (uint8_t *)ctx->ref_buf;
> +     dst = (uint8_t *)ctx->data_buf;
> +
> +     if (memcmp(src, dst, size)) {
> +             printf("Transfer is corrupted\n");
> +             if (ctx->verbose) {
> +                     for (i = 0; i < size; i++) {
> +                             if (*src != *dst) {
> +                                     if (++n >= ERR_CHECK_LIMIT)
> +                                             break;
> +                                     printf("Mismatch at 0x%zx, "
> +                                             "Expected %02x  Actual
> %02x\n",
> +                                             i, *src, *dst);
> +                             }
> +                             src++;
> +                             dst++;
> +                     }
> +                     if (n < ERR_CHECK_LIMIT) {
> +                             printf("Found %d error bytes\n", n);
> +                     } else {
> +                             printf("......\n");
> +                             printf("Found more than %d error bytes\n", n);
> +                     }
> +             }
> +             return -1;
> +     }
> +
> +     printf("Transfer is verified\n");
> +     return 0;
> +}
> +
> +static void blk_write64(uint64_t *dev_addr, uint64_t *host_addr, uint64_t
> bytes)
> +{
> +     uint64_t qwords = bytes / sizeof(uint64_t);
> +
> +     if (!IS_ALIGNED_QWORD((uint64_t)dev_addr) ||
> +             !IS_ALIGNED_QWORD((uint64_t)bytes))
> +             return;
> +
> +     for (; qwords > 0; qwords--, host_addr++, dev_addr++)
> +             rte_write64(*host_addr, dev_addr);
> +}
> +
> +static void blk_read64(uint64_t *dev_addr, uint64_t *host_addr, uint64_t
> bytes)
> +{
> +     uint64_t qwords = bytes / sizeof(uint64_t);
> +
> +     if (!IS_ALIGNED_QWORD((uint64_t)dev_addr) ||
> +             !IS_ALIGNED_QWORD((uint64_t)bytes))
> +             return;
> +
> +     for (; qwords > 0; qwords--, host_addr++, dev_addr++)
> +             *host_addr = rte_read64(dev_addr);
> +}
> +
> +static void switch_ase_page(struct dma_afu_ctx *ctx, uint64_t addr)
> +{
> +     uint64_t requested_page = addr & ~DMA_ASE_WINDOW_MASK;
> +
> +     if (!ctx)
> +             return;
> +
> +     if (requested_page != ctx->cur_ase_page) {
> +             rte_write64(requested_page, ctx->ase_ctrl_addr);
> +             ctx->cur_ase_page = requested_page;
> +     }
> +}
> +
> +static int ase_write_unaligned(struct dma_afu_ctx *ctx, uint64_t dev_addr,
> +     uint64_t host_addr, uint32_t count)
> +{
> +     uint64_t dev_aligned_addr = 0;
> +     uint64_t shift = 0;
> +     uint64_t val = 0;
> +     uintptr_t addr = (uintptr_t)host_addr;  /* transfer to pointer size */
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" --> 0x%"PRIx64" (0x%x)",
> host_addr,
> +             dev_addr, count);
> +
> +     if (!ctx || (count >= QWORD_BYTES))
> +             return -EINVAL;
> +
> +     if (!count)
> +             return 0;
> +
> +     switch_ase_page(ctx, dev_addr);
> +
> +     shift = dev_addr % QWORD_BYTES;
> +     dev_aligned_addr = (dev_addr - shift) & DMA_ASE_WINDOW_MASK;
> +     val = rte_read64(ctx->ase_data_addr + dev_aligned_addr);
> +     rte_memcpy(((char *)(&val)) + shift, (void *)addr, count);
> +
> +     /* write back to device */
> +     rte_write64(val, ctx->ase_data_addr + dev_aligned_addr);
> +
> +     return 0;
> +}
> +
> +static int ase_write(struct dma_afu_ctx *ctx, uint64_t *dst_ptr,
> +     uint64_t *src_ptr, uint64_t *count)
> +{
> +     uint64_t src = *src_ptr;
> +     uint64_t dst = *dst_ptr;
> +     uint64_t align_bytes = *count;
> +     uint64_t offset = 0;
> +     uint64_t left_in_page = DMA_ASE_WINDOW;
> +     uint64_t size_to_copy = 0;
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" --> 0x%"PRIx64"
> (0x%"PRIx64")", src, dst,
> +             align_bytes);
> +
> +     if (!ctx || !IS_ALIGNED_DWORD(dst))
> +             return -EINVAL;
> +
> +     if (align_bytes < DWORD_BYTES)
> +             return 0;
> +
> +     if (!IS_ALIGNED_QWORD(dst)) {
> +             /* Write out a single DWORD to get QWORD aligned */
> +             switch_ase_page(ctx, dst);
> +             offset = dst & DMA_ASE_WINDOW_MASK;
> +
> +             rte_write32(*(uint32_t *)(uintptr_t)src,
> +                     ctx->ase_data_addr + offset);
> +             src += DWORD_BYTES;
> +             dst += DWORD_BYTES;
> +             align_bytes -= DWORD_BYTES;
> +     }
> +
> +     if (!align_bytes)
> +             return 0;
> +
> +     /* Write out blocks of 64-bit values */
> +     while (align_bytes >= QWORD_BYTES) {
> +             left_in_page -= dst & DMA_ASE_WINDOW_MASK;
> +             size_to_copy =
> +                     MIN(left_in_page, (align_bytes & ~(QWORD_BYTES -
> 1)));
> +             if (size_to_copy < QWORD_BYTES)
> +                     break;
> +             switch_ase_page(ctx, dst);
> +             offset = dst & DMA_ASE_WINDOW_MASK;
> +             blk_write64((uint64_t *)(ctx->ase_data_addr + offset),
> +                     (uint64_t *)(uintptr_t)src, size_to_copy);
> +             src += size_to_copy;
> +             dst += size_to_copy;
> +             align_bytes -= size_to_copy;
> +     }
> +
> +     if (align_bytes >= DWORD_BYTES) {
> +             /* Write out remaining DWORD */
> +             switch_ase_page(ctx, dst);
> +             offset = dst & DMA_ASE_WINDOW_MASK;
> +             rte_write32(*(uint32_t *)(uintptr_t)src,
> +                     ctx->ase_data_addr + offset);
> +             src += DWORD_BYTES;
> +             dst += DWORD_BYTES;
> +             align_bytes -= DWORD_BYTES;
> +     }
> +
> +     *src_ptr = src;
> +     *dst_ptr = dst;
> +     *count = align_bytes;
> +
> +     return 0;
> +}
> +
> +static int ase_host_to_fpga(struct dma_afu_ctx *ctx, uint64_t *dst_ptr,
> +     uint64_t *src_ptr, uint64_t count)
> +{
> +     uint64_t dst = *dst_ptr;
> +     uint64_t src = *src_ptr;
> +     uint64_t count_left = count;
> +     uint64_t unaligned_size = 0;
> +     int ret = 0;
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" --> 0x%"PRIx64"
> (0x%"PRIx64")", src, dst,
> +             count);
> +
> +     /* aligns address to 8 byte using dst masking method */
> +     if (!IS_ALIGNED_DWORD(dst) && !IS_ALIGNED_QWORD(dst)) {
> +             unaligned_size = QWORD_BYTES - (dst % QWORD_BYTES);
> +             if (unaligned_size > count_left)
> +                     unaligned_size = count_left;
> +             ret = ase_write_unaligned(ctx, dst, src, unaligned_size);
> +             if (ret)
> +                     return ret;
> +             count_left -= unaligned_size;
> +             src += unaligned_size;
> +             dst += unaligned_size;
> +     }
> +
> +     /* Handles 8/4 byte MMIO transfer */
> +     ret = ase_write(ctx, &dst, &src, &count_left);
> +     if (ret)
> +             return ret;
> +
> +     /* Left over unaligned bytes transferred using dst masking method */
> +     unaligned_size = QWORD_BYTES - (dst % QWORD_BYTES);
> +     if (unaligned_size > count_left)
> +             unaligned_size = count_left;
> +
> +     ret = ase_write_unaligned(ctx, dst, src, unaligned_size);
> +     if (ret)
> +             return ret;
> +
> +     count_left -= unaligned_size;
> +     *dst_ptr = dst + unaligned_size;
> +     *src_ptr = src + unaligned_size;
> +
> +     return 0;
> +}
> +
> +static int ase_read_unaligned(struct dma_afu_ctx *ctx, uint64_t dev_addr,
> +     uint64_t host_addr, uint32_t count)
> +{
> +     uint64_t dev_aligned_addr = 0;
> +     uint64_t shift = 0;
> +     uint64_t val = 0;
> +     uintptr_t addr = (uintptr_t)host_addr;  /* transfer to pointer size */
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" <-- 0x%"PRIx64" (0x%x)",
> host_addr,
> +             dev_addr, count);
> +
> +     if (!ctx || (count >= QWORD_BYTES))
> +             return -EINVAL;
> +
> +     if (!count)
> +             return 0;
> +
> +     switch_ase_page(ctx, dev_addr);
> +
> +     shift = dev_addr % QWORD_BYTES;
> +     dev_aligned_addr = (dev_addr - shift) & DMA_ASE_WINDOW_MASK;
> +     val = rte_read64(ctx->ase_data_addr + dev_aligned_addr);
> +     rte_memcpy((void *)addr, ((char *)(&val)) + shift, count);
> +
> +     return 0;
> +}
> +
> +static int ase_read(struct dma_afu_ctx *ctx, uint64_t *src_ptr,
> +     uint64_t *dst_ptr, uint64_t *count)
> +{
> +     uint64_t src = *src_ptr;
> +     uint64_t dst = *dst_ptr;
> +     uint64_t align_bytes = *count;
> +     uint64_t offset = 0;
> +     uint64_t left_in_page = DMA_ASE_WINDOW;
> +     uint64_t size_to_copy = 0;
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" <-- 0x%"PRIx64"
> (0x%"PRIx64")", dst, src,
> +             align_bytes);
> +
> +     if (!ctx || !IS_ALIGNED_DWORD(src))
> +             return -EINVAL;
> +
> +     if (align_bytes < DWORD_BYTES)
> +             return 0;
> +
> +     if (!IS_ALIGNED_QWORD(src)) {
> +             /* Read a single DWORD to get QWORD aligned */
> +             switch_ase_page(ctx, src);
> +             offset = src & DMA_ASE_WINDOW_MASK;
> +             *(uint32_t *)(uintptr_t)dst =
> +                     rte_read32(ctx->ase_data_addr + offset);
> +             src += DWORD_BYTES;
> +             dst += DWORD_BYTES;
> +             align_bytes -= DWORD_BYTES;
> +     }
> +
> +     if (!align_bytes)
> +             return 0;
> +
> +     /* Read blocks of 64-bit values */
> +     while (align_bytes >= QWORD_BYTES) {
> +             left_in_page -= src & DMA_ASE_WINDOW_MASK;
> +             size_to_copy =
> +                     MIN(left_in_page, (align_bytes & ~(QWORD_BYTES -
> 1)));
> +             if (size_to_copy < QWORD_BYTES)
> +                     break;
> +             switch_ase_page(ctx, src);
> +             offset = src & DMA_ASE_WINDOW_MASK;
> +             blk_read64((uint64_t *)(ctx->ase_data_addr + offset),
> +                     (uint64_t *)(uintptr_t)dst, size_to_copy);
> +             src += size_to_copy;
> +             dst += size_to_copy;
> +             align_bytes -= size_to_copy;
> +     }
> +
> +     if (align_bytes >= DWORD_BYTES) {
> +             /* Read remaining DWORD */
> +             switch_ase_page(ctx, src);
> +             offset = src & DMA_ASE_WINDOW_MASK;
> +             *(uint32_t *)(uintptr_t)dst =
> +                     rte_read32(ctx->ase_data_addr + offset);
> +             src += DWORD_BYTES;
> +             dst += DWORD_BYTES;
> +             align_bytes -= DWORD_BYTES;
> +     }
> +
> +     *src_ptr = src;
> +     *dst_ptr = dst;
> +     *count = align_bytes;
> +
> +     return 0;
> +}
> +
> +static int ase_fpga_to_host(struct dma_afu_ctx *ctx, uint64_t *src_ptr,
> +     uint64_t *dst_ptr, uint64_t count)
> +{
> +     uint64_t src = *src_ptr;
> +     uint64_t dst = *dst_ptr;
> +     uint64_t count_left = count;
> +     uint64_t unaligned_size = 0;
> +     int ret = 0;
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" --> 0x%"PRIx64"
> (0x%"PRIx64")", src, dst,
> +             count);
> +
> +     /* Aligns address to 8 byte using src masking method */
> +     if (!IS_ALIGNED_DWORD(src) && !IS_ALIGNED_QWORD(src)) {
> +             unaligned_size = QWORD_BYTES - (src % QWORD_BYTES);
> +             if (unaligned_size > count_left)
> +                     unaligned_size = count_left;
> +             ret = ase_read_unaligned(ctx, src, dst, unaligned_size);
> +             if (ret)
> +                     return ret;
> +             count_left -= unaligned_size;
> +             dst += unaligned_size;
> +             src += unaligned_size;
> +     }
> +
> +     /* Handles 8/4 byte MMIO transfer */
> +     ret = ase_read(ctx, &src, &dst, &count_left);
> +     if (ret)
> +             return ret;
> +
> +     /* Left over unaligned bytes transferred using src masking method */
> +     unaligned_size = QWORD_BYTES - (src % QWORD_BYTES);
> +     if (unaligned_size > count_left)
> +             unaligned_size = count_left;
> +
> +     ret = ase_read_unaligned(ctx, src, dst, unaligned_size);
> +     if (ret)
> +             return ret;
> +
> +     count_left -= unaligned_size;
> +     *dst_ptr = dst + unaligned_size;
> +     *src_ptr = src + unaligned_size;
> +
> +     return 0;
> +}
> +
> +static void clear_interrupt(struct dma_afu_ctx *ctx)
> +{
> +     /* clear interrupt by writing 1 to IRQ bit in status register */
> +     msgdma_status status;
> +
> +     if (!ctx)
> +             return;
> +
> +     status.csr = 0;
> +     status.irq = 1;
> +     rte_write32(status.csr, CSR_STATUS(ctx->csr_addr));
> +}
> +
> +static int poll_interrupt(struct dma_afu_ctx *ctx)
> +{
> +     struct pollfd pfd = {0};
> +     uint64_t count = 0;
> +     ssize_t bytes_read = 0;
> +     int poll_ret = 0;
> +     int ret = 0;
> +
> +     if (!ctx || (ctx->event_fd < 0))
> +             return -EINVAL;
> +
> +     pfd.fd = ctx->event_fd;
> +     pfd.events = POLLIN;
> +     poll_ret = poll(&pfd, 1, DMA_TIMEOUT_MSEC);
> +     if (poll_ret < 0) {
> +             IFPGA_RAWDEV_PMD_ERR("Error %s", strerror(errno));
> +             ret = -EFAULT;
> +             goto out;
> +     } else if (poll_ret == 0) {
> +             IFPGA_RAWDEV_PMD_ERR("Timeout");
> +             ret = -ETIMEDOUT;
> +     } else {
> +             bytes_read = read(pfd.fd, &count, sizeof(count));
> +             if (bytes_read > 0) {
> +                     if (ctx->verbose)
> +                             IFPGA_RAWDEV_PMD_DEBUG("Successful, ret
> %d, cnt %"PRIu64,
> +                                     poll_ret, count);
> +                     ret = 0;
> +             } else {
> +                     IFPGA_RAWDEV_PMD_ERR("Failed %s", bytes_read > 0
> ?
> +                             strerror(errno) : "zero bytes read");
> +                     ret = -EIO;
> +             }
> +     }
> +out:
> +     clear_interrupt(ctx);
> +     return ret;
> +}
> +
> +static void send_descriptor(struct dma_afu_ctx *ctx, msgdma_ext_desc *desc)
> +{
> +     msgdma_status status;
> +     uint64_t fpga_queue_full = 0;
> +
> +     if (!ctx)
> +             return;
> +
> +     if (ctx->verbose) {
> +             IFPGA_RAWDEV_PMD_DEBUG("descriptor.rd_address =
> 0x%x%08x",
> +                     desc->rd_address_ext, desc->rd_address);
> +             IFPGA_RAWDEV_PMD_DEBUG("descriptor.wr_address =
> 0x%x%08x",
> +                     desc->wr_address_ext, desc->wr_address);
> +             IFPGA_RAWDEV_PMD_DEBUG("descriptor.len = %u", desc-
> >len);
> +             IFPGA_RAWDEV_PMD_DEBUG("descriptor.wr_burst_count =
> %u",
> +                     desc->wr_burst_count);
> +             IFPGA_RAWDEV_PMD_DEBUG("descriptor.rd_burst_count =
> %u",
> +                     desc->rd_burst_count);
> +             IFPGA_RAWDEV_PMD_DEBUG("descriptor.wr_stride %u", desc-
> >wr_stride);
> +             IFPGA_RAWDEV_PMD_DEBUG("descriptor.rd_stride %u", desc-
> >rd_stride);
> +     }
> +
> +     do {
> +             status.csr = rte_read32(CSR_STATUS(ctx->csr_addr));
> +             if (fpga_queue_full++ > 100000000) {
> +                     IFPGA_RAWDEV_PMD_DEBUG("DMA queue full retry");
> +                     fpga_queue_full = 0;
> +             }
> +     } while (status.desc_buf_full);
> +
> +     blk_write64((uint64_t *)ctx->desc_addr, (uint64_t *)desc,
> +             sizeof(*desc));
> +}
> +
> +static int do_dma(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t src,
> +     int count, int is_last_desc, fpga_dma_type type, int intr_en)
> +{
> +     msgdma_ext_desc *desc = NULL;
> +     int alignment_offset = 0;
> +     int segment_size = 0;
> +
> +     if (!ctx)
> +             return -EINVAL;
> +
> +     /* src, dst and count must be 64-byte aligned */
> +     if (!IS_DMA_ALIGNED(src) || !IS_DMA_ALIGNED(dst) ||
> +             !IS_DMA_ALIGNED(count))
> +             return -EINVAL;
> +     memset(ctx->desc_buf, 0, sizeof(msgdma_ext_desc));
> +
> +     /* these fields are fixed for all DMA transfers */
> +     desc = ctx->desc_buf;
> +     desc->seq_num = 0;
> +     desc->wr_stride = 1;
> +     desc->rd_stride = 1;
> +     desc->control.go = 1;
> +     if (intr_en)
> +             desc->control.transfer_irq_en = 1;
> +     else
> +             desc->control.transfer_irq_en = 0;
> +
> +     if (!is_last_desc)
> +             desc->control.early_done_en = 1;
> +     else
> +             desc->control.early_done_en = 0;
> +
> +     if (type == FPGA_TO_FPGA) {
> +             desc->rd_address = src & DMA_MASK_32_BIT;
> +             desc->wr_address = dst & DMA_MASK_32_BIT;
> +             desc->len = count;
> +             desc->wr_burst_count = 4;
> +             desc->rd_burst_count = 4;
> +             desc->rd_address_ext = (src >> 32) & DMA_MASK_32_BIT;
> +             desc->wr_address_ext = (dst >> 32) & DMA_MASK_32_BIT;
> +             send_descriptor(ctx, desc);
> +     } else {
> +             /* check CCIP (host) address is aligned to 4CL (256B) */
> +             alignment_offset = (type == HOST_TO_FPGA)
> +                     ? (src % CCIP_ALIGN_BYTES) : (dst %
> CCIP_ALIGN_BYTES);
> +             /* performing a short transfer to get aligned */
> +             if (alignment_offset != 0) {
> +                     desc->rd_address = src & DMA_MASK_32_BIT;
> +                     desc->wr_address = dst & DMA_MASK_32_BIT;
> +                     desc->wr_burst_count = 1;
> +                     desc->rd_burst_count = 1;
> +                     desc->rd_address_ext = (src >> 32) &
> DMA_MASK_32_BIT;
> +                     desc->wr_address_ext = (dst >> 32) &
> DMA_MASK_32_BIT;
> +                     /* count isn't large enough to hit next 4CL boundary */
> +                     if ((CCIP_ALIGN_BYTES - alignment_offset) >= count) {
> +                             segment_size = count;
> +                             count = 0;
> +                     } else {
> +                             segment_size = CCIP_ALIGN_BYTES
> +                                     - alignment_offset;
> +                             src += segment_size;
> +                             dst += segment_size;
> +                             count -= segment_size;
> +                             desc->control.transfer_irq_en = 0;
> +                     }
> +                     /* post short transfer to align to a 4CL (256 byte) */
> +                     desc->len = segment_size;
> +                     send_descriptor(ctx, desc);
> +             }
> +             /* at this point we are 4CL (256 byte) aligned */
> +             if (count >= CCIP_ALIGN_BYTES) {
> +                     desc->rd_address = src & DMA_MASK_32_BIT;
> +                     desc->wr_address = dst & DMA_MASK_32_BIT;
> +                     desc->wr_burst_count = 4;
> +                     desc->rd_burst_count = 4;
> +                     desc->rd_address_ext = (src >> 32) &
> DMA_MASK_32_BIT;
> +                     desc->wr_address_ext = (dst >> 32) &
> DMA_MASK_32_BIT;
> +                     /* buffer ends on 4CL boundary */
> +                     if ((count % CCIP_ALIGN_BYTES) == 0) {
> +                             segment_size = count;
> +                             count = 0;
> +                     } else {
> +                             segment_size = count
> +                                     - (count % CCIP_ALIGN_BYTES);
> +                             src += segment_size;
> +                             dst += segment_size;
> +                             count -= segment_size;
> +                             desc->control.transfer_irq_en = 0;
> +                     }
> +                     desc->len = segment_size;
> +                     send_descriptor(ctx, desc);
> +             }
> +             /* post short transfer to handle the remainder */
> +             if (count > 0) {
> +                     desc->rd_address = src & DMA_MASK_32_BIT;
> +                     desc->wr_address = dst & DMA_MASK_32_BIT;
> +                     desc->len = count;
> +                     desc->wr_burst_count = 1;
> +                     desc->rd_burst_count = 1;
> +                     desc->rd_address_ext = (src >> 32) &
> DMA_MASK_32_BIT;
> +                     desc->wr_address_ext = (dst >> 32) &
> DMA_MASK_32_BIT;
> +                     if (intr_en)
> +                             desc->control.transfer_irq_en = 1;
> +                     send_descriptor(ctx, desc);
> +             }
> +     }
> +
> +     return 0;
> +}
> +
> +static int issue_magic(struct dma_afu_ctx *ctx)
> +{
> +     *(ctx->magic_buf) = 0ULL;
> +     return do_dma(ctx, DMA_WF_HOST_ADDR(ctx->magic_iova),
> +             DMA_WF_MAGIC_ROM, 64, 1, FPGA_TO_HOST, 1);
> +}
> +
> +static void wait_magic(struct dma_afu_ctx *ctx)
> +{
> +     int magic_timeout = 0;
> +
> +     if (!ctx)
> +             return;
> +
> +     poll_interrupt(ctx);
> +     while (*(ctx->magic_buf) != DMA_WF_MAGIC) {
> +             if (magic_timeout++ > 1000) {
> +                     IFPGA_RAWDEV_PMD_ERR("DMA magic operation
> timeout");
> +                     magic_timeout = 0;
> +                     break;
> +             }
> +     }
> +     *(ctx->magic_buf) = 0ULL;
> +}
> +
> +static int dma_tx_buf(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t src,
> +     uint64_t chunk, int is_last_chunk, int *intr_issued)
> +{
> +     int intr_en = 0;
> +     int ret = 0;
> +
> +     if (!ctx || !intr_issued)
> +             return -EINVAL;
> +
> +     src += chunk * ctx->dma_buf_size;
> +     dst += chunk * ctx->dma_buf_size;
> +
> +     if (((chunk % HALF_DMA_BUF) == (HALF_DMA_BUF - 1)) ||
> is_last_chunk) {
> +             if (*intr_issued) {
> +                     ret = poll_interrupt(ctx);
> +                     if (ret)
> +                             return ret;
> +             }
> +             intr_en = 1;
> +     }
> +
> +     chunk %= NUM_DMA_BUF;
> +     rte_memcpy(ctx->dma_buf[chunk], (void *)(uintptr_t)src,
> +             ctx->dma_buf_size);
> +     ret = do_dma(ctx, dst, DMA_HOST_ADDR(ctx->dma_iova[chunk]),
> +                     ctx->dma_buf_size, 0, HOST_TO_FPGA, intr_en);
> +     if (intr_en)
> +             *intr_issued = 1;
> +
> +     return ret;
> +}
> +
> +static int dma_host_to_fpga(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t
> src,
> +     size_t count)
> +{
> +     uint64_t i = 0;
> +     uint64_t count_left = count;
> +     uint64_t aligned_addr = 0;
> +     uint64_t align_bytes = 0;
> +     uint64_t dma_chunks = 0;
> +     uint64_t dma_tx_bytes = 0;
> +     uint64_t offset = 0;
> +     int issued_intr = 0;
> +     int ret = 0;
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64" (%zu)",
> src, dst,
> +             count);
> +
> +     if (!ctx)
> +             return -EINVAL;
> +
> +     if (!IS_DMA_ALIGNED(dst)) {
> +             if (count_left < DMA_ALIGN_BYTES)
> +                     return ase_host_to_fpga(ctx, &dst, &src, count_left);
> +
> +             aligned_addr = ((dst / DMA_ALIGN_BYTES) + 1)
> +                     * DMA_ALIGN_BYTES;
> +             align_bytes = aligned_addr - dst;
> +             ret = ase_host_to_fpga(ctx, &dst, &src, align_bytes);
> +             if (ret)
> +                     return ret;
> +             count_left = count_left - align_bytes;
> +     }
> +
> +     if (count_left) {
> +             dma_chunks = count_left / ctx->dma_buf_size;
> +             offset = dma_chunks * ctx->dma_buf_size;
> +             count_left -= offset;
> +             IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64
> +                     " (%"PRIu64"...0x%"PRIx64")",
> +                     src, dst, dma_chunks, count_left);
> +             for (i = 0; i < dma_chunks; i++) {
> +                     ret = dma_tx_buf(ctx, dst, src, i,
> +                             i == (dma_chunks - 1), &issued_intr);
> +                     if (ret)
> +                             return ret;
> +             }
> +
> +             if (issued_intr) {
> +                     ret = poll_interrupt(ctx);
> +                     if (ret)
> +                             return ret;
> +             }
> +
> +             if (count_left) {
> +                     i = count_left / DMA_ALIGN_BYTES;
> +                     if (i > 0) {
> +                             dma_tx_bytes = i * DMA_ALIGN_BYTES;
> +                             IFPGA_RAWDEV_PMD_DEBUG("left over
> 0x%"PRIx64" to DMA",
> +                                     dma_tx_bytes);
> +                             rte_memcpy(ctx->dma_buf[0],
> +                                     (void *)(uintptr_t)(src + offset),
> +                                     dma_tx_bytes);
> +                             ret = do_dma(ctx, dst + offset,
> +                                     DMA_HOST_ADDR(ctx->dma_iova[0]),
> +                                     dma_tx_bytes, 1, HOST_TO_FPGA, 1);
> +                             if (ret)
> +                                     return ret;
> +                             ret = poll_interrupt(ctx);
> +                             if (ret)
> +                                     return ret;
> +                     }
> +
> +                     count_left -= dma_tx_bytes;
> +                     if (count_left) {
> +                             IFPGA_RAWDEV_PMD_DEBUG("left over
> 0x%"PRIx64" to ASE",
> +                                     count_left);
> +                             dst += offset + dma_tx_bytes;
> +                             src += offset + dma_tx_bytes;
> +                             ret = ase_host_to_fpga(ctx, &dst, &src,
> +                                     count_left);
> +                     }
> +             }
> +     }
> +
> +     return ret;
> +}
> +
> +static int dma_rx_buf(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t src,
> +     uint64_t chunk, int is_last_chunk, uint64_t *rx_count, int *wf_issued)
> +{
> +     uint64_t i = chunk % NUM_DMA_BUF;
> +     uint64_t n = *rx_count;
> +     uint64_t num_pending = 0;
> +     int ret = 0;
> +
> +     if (!ctx || !wf_issued)
> +             return -EINVAL;
> +
> +     ret = do_dma(ctx, DMA_HOST_ADDR(ctx->dma_iova[i]),
> +             src + chunk * ctx->dma_buf_size,
> +             ctx->dma_buf_size, 1, FPGA_TO_HOST, 0);
> +     if (ret)
> +             return ret;
> +
> +     num_pending = chunk - n + 1;
> +     if (num_pending == HALF_DMA_BUF) {
> +             ret = issue_magic(ctx);
> +             if (ret) {
> +                     IFPGA_RAWDEV_PMD_DEBUG("Magic issue failed");
> +                     return ret;
> +             }
> +             *wf_issued = 1;
> +     }
> +
> +     if ((num_pending > (NUM_DMA_BUF - 1)) || is_last_chunk) {
> +             if (*wf_issued) {
> +                     wait_magic(ctx);
> +                     for (i = 0; i < HALF_DMA_BUF; i++) {
> +                             rte_memcpy((void *)(uintptr_t)(dst +
> +                                             n * ctx->dma_buf_size),
> +                                     ctx->dma_buf[n % NUM_DMA_BUF],
> +                                     ctx->dma_buf_size);
> +                             n++;
> +                     }
> +                     *wf_issued = 0;
> +                     *rx_count = n;
> +             }
> +             ret = issue_magic(ctx);
> +             if (ret) {
> +                     IFPGA_RAWDEV_PMD_DEBUG("Magic issue failed");
> +                     return ret;
> +             }
> +             *wf_issued = 1;
> +     }
> +
> +     return ret;
> +}
> +
> +static int dma_fpga_to_host(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t
> src,
> +     size_t count)
> +{
> +     uint64_t i = 0;
> +     uint64_t count_left = count;
> +     uint64_t aligned_addr = 0;
> +     uint64_t align_bytes = 0;
> +     uint64_t dma_chunks = 0;
> +     uint64_t pending_buf = 0;
> +     uint64_t dma_rx_bytes = 0;
> +     uint64_t offset = 0;
> +     int wf_issued = 0;
> +     int ret = 0;
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64" (%zu)",
> src, dst,
> +             count);
> +
> +     if (!ctx)
> +             return -EINVAL;
> +
> +     if (!IS_DMA_ALIGNED(src)) {
> +             if (count_left < DMA_ALIGN_BYTES)
> +                     return ase_fpga_to_host(ctx, &src, &dst, count_left);
> +
> +             aligned_addr = ((src / DMA_ALIGN_BYTES) + 1)
> +                      * DMA_ALIGN_BYTES;
> +             align_bytes = aligned_addr - src;
> +             ret = ase_fpga_to_host(ctx, &src, &dst, align_bytes);
> +             if (ret)
> +                     return ret;
> +             count_left = count_left - align_bytes;
> +     }
> +
> +     if (count_left) {
> +             dma_chunks = count_left / ctx->dma_buf_size;
> +             offset = dma_chunks * ctx->dma_buf_size;
> +             count_left -= offset;
> +             IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64
> +                     " (%"PRIu64"...0x%"PRIx64")",
> +                     src, dst, dma_chunks, count_left);
> +             for (i = 0; i < dma_chunks; i++) {
> +                     ret = dma_rx_buf(ctx, dst, src, i,
> +                             i == (dma_chunks - 1),
> +                             &pending_buf, &wf_issued);
> +                     if (ret)
> +                             return ret;
> +             }
> +
> +             if (wf_issued)
> +                     wait_magic(ctx);
> +
> +             /* clear out final dma memcpy operations */
> +             while (pending_buf < dma_chunks) {
> +                     /* constant size transfer; no length check required */
> +                     rte_memcpy((void *)(uintptr_t)(dst +
> +                                     pending_buf * ctx->dma_buf_size),
> +                             ctx->dma_buf[pending_buf %
> NUM_DMA_BUF],
> +                             ctx->dma_buf_size);
> +                     pending_buf++;
> +             }
> +
> +             if (count_left > 0) {
> +                     i = count_left / DMA_ALIGN_BYTES;
> +                     if (i > 0) {
> +                             dma_rx_bytes = i * DMA_ALIGN_BYTES;
> +                             IFPGA_RAWDEV_PMD_DEBUG("left over
> 0x%"PRIx64" to DMA",
> +                                     dma_rx_bytes);
> +                             ret = do_dma(ctx,
> +                                     DMA_HOST_ADDR(ctx->dma_iova[0]),
> +                                     src + offset,
> +                                     dma_rx_bytes, 1, FPGA_TO_HOST, 0);
> +                             if (ret)
> +                                     return ret;
> +                             ret = issue_magic(ctx);
> +                             if (ret)
> +                                     return ret;
> +                             wait_magic(ctx);
> +                             rte_memcpy((void *)(uintptr_t)(dst + offset),
> +                                     ctx->dma_buf[0], dma_rx_bytes);
> +                     }
> +
> +                     count_left -= dma_rx_bytes;
> +                     if (count_left) {
> +                             IFPGA_RAWDEV_PMD_DEBUG("left over
> 0x%"PRIx64" to ASE",
> +                                     count_left);
> +                             dst += offset + dma_rx_bytes;
> +                             src += offset + dma_rx_bytes;
> +                             ret = ase_fpga_to_host(ctx, &src, &dst,
> +                                                     count_left);
> +                     }
> +             }
> +     }
> +
> +     return ret;
> +}
> +
> +static int dma_fpga_to_fpga(struct dma_afu_ctx *ctx, uint64_t dst, uint64_t
> src,
> +     size_t count)
> +{
> +     uint64_t i = 0;
> +     uint64_t count_left = count;
> +     uint64_t dma_chunks = 0;
> +     uint64_t offset = 0;
> +     uint32_t tx_chunks = 0;
> +     uint64_t *tmp_buf = NULL;
> +     int ret = 0;
> +
> +     IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64" (%zu)",
> src, dst,
> +             count);
> +
> +     if (!ctx)
> +             return -EINVAL;
> +
> +     if (IS_DMA_ALIGNED(dst) && IS_DMA_ALIGNED(src)
> +         && IS_DMA_ALIGNED(count_left)) {
> +             dma_chunks = count_left / ctx->dma_buf_size;
> +             offset = dma_chunks * ctx->dma_buf_size;
> +             count_left -= offset;
> +             IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" ---> 0x%"PRIx64
> +                     " (%"PRIu64"...0x%"PRIx64")",
> +                     src, dst, dma_chunks, count_left);
> +             for (i = 0; i < dma_chunks; i++) {
> +                     ret = do_dma(ctx, dst + i * ctx->dma_buf_size,
> +                             src + i * ctx->dma_buf_size,
> +                             ctx->dma_buf_size, 0, FPGA_TO_FPGA, 0);
> +                     if (ret)
> +                             return ret;
> +                     if ((((i + 1) % NUM_DMA_BUF) == 0) ||
> +                             (i == (dma_chunks - 1))) {
> +                             ret = issue_magic(ctx);
> +                             if (ret)
> +                                     return ret;
> +                             wait_magic(ctx);
> +                     }
> +             }
> +
> +             if (count_left > 0) {
> +                     IFPGA_RAWDEV_PMD_DEBUG("left over 0x%"PRIx64"
> to DMA", count_left);
> +                     ret = do_dma(ctx, dst + offset, src + offset,
> +                             count_left, 1, FPGA_TO_FPGA, 0);
> +                     if (ret)
> +                             return ret;
> +                     ret = issue_magic(ctx);
> +                     if (ret)
> +                             return ret;
> +                     wait_magic(ctx);
> +             }
> +     } else {
> +             if ((src < dst) && (src + count_left > dst)) {
> +                     IFPGA_RAWDEV_PMD_ERR("Overlapping: 0x%"PRIx64
> +                             " -> 0x%"PRIx64" (0x%"PRIx64")",
> +                             src, dst, count_left);
> +                     return -EINVAL;
> +             }
> +             tx_chunks = count_left / ctx->dma_buf_size;
> +             offset = tx_chunks * ctx->dma_buf_size;
> +             count_left -= offset;
> +             IFPGA_RAWDEV_PMD_DEBUG("0x%"PRIx64" --> 0x%"PRIx64
> +                     " (%u...0x%"PRIx64")",
> +                     src, dst, tx_chunks, count_left);
> +             tmp_buf = (uint64_t *)rte_malloc(NULL, ctx->dma_buf_size,
> +                     DMA_ALIGN_BYTES);
> +             for (i = 0; i < tx_chunks; i++) {
> +                     ret = dma_fpga_to_host(ctx, (uint64_t)tmp_buf,
> +                             src + i * ctx->dma_buf_size,
> +                             ctx->dma_buf_size);
> +                     if (ret)
> +                             goto free_buf;
> +                     ret = dma_host_to_fpga(ctx,
> +                             dst + i * ctx->dma_buf_size,
> +                             (uint64_t)tmp_buf, ctx->dma_buf_size);
> +                     if (ret)
> +                             goto free_buf;
> +             }
> +
> +             if (count_left > 0) {
> +                     ret = dma_fpga_to_host(ctx, (uint64_t)tmp_buf,
> +                             src + offset, count_left);
> +                     if (ret)
> +                             goto free_buf;
> +                     ret = dma_host_to_fpga(ctx, dst + offset,
> +                             (uint64_t)tmp_buf, count_left);
> +                     if (ret)
> +                             goto free_buf;
> +             }
> +free_buf:
> +             rte_free(tmp_buf);
> +     }
> +
> +     return ret;
> +}
> +
> +static int dma_transfer_sync(struct dma_afu_ctx *ctx, uint64_t dst,
> +     uint64_t src, size_t count, fpga_dma_type type)
> +{
> +     int ret = 0;
> +
> +     if (!ctx)
> +             return -EINVAL;
> +
> +     if (type == HOST_TO_FPGA)
> +             ret = dma_host_to_fpga(ctx, dst, src, count);
> +     else if (type == FPGA_TO_HOST)
> +             ret = dma_fpga_to_host(ctx, dst, src, count);
> +     else if (type == FPGA_TO_FPGA)
> +             ret = dma_fpga_to_fpga(ctx, dst, src, count);
> +     else
> +             return -EINVAL;
> +
> +     return ret;
> +}
> +
> +static double getTime(struct timespec start, struct timespec end)
> +{
> +     uint64_t diff = 1000000000L * (end.tv_sec - start.tv_sec)
> +             + end.tv_nsec - start.tv_nsec;
> +     return (double)diff / (double)1000000000L;
> +}
> +
> +#define SWEEP_ITERS 1
> +static int sweep_test(struct dma_afu_ctx *ctx, uint32_t length,
> +     uint64_t ddr_offset, uint64_t buf_offset, uint64_t size_decrement)
> +{
> +     struct timespec start, end;
> +     uint64_t test_size = 0;
> +     uint64_t *dma_buf_ptr = NULL;
> +     double throughput, total_time = 0.0;
> +     int i = 0;
> +     int ret = 0;
> +
> +     if (!ctx || !ctx->data_buf || !ctx->ref_buf) {
> +             IFPGA_RAWDEV_PMD_ERR("Buffer for DMA test is not
> allocated");
> +             return -EINVAL;
> +     }
> +
> +     if (length < (buf_offset + size_decrement)) {
> +             IFPGA_RAWDEV_PMD_ERR("Test length does not match
> unaligned parameter");
> +             return -EINVAL;
> +     }
> +     test_size = length - (buf_offset + size_decrement);
> +     if ((ddr_offset + test_size) > ctx->mem_size) {
> +             IFPGA_RAWDEV_PMD_ERR("Test is out of DDR memory
> space");
> +             return -EINVAL;
> +     }
> +
> +     dma_buf_ptr = (uint64_t *)((uint8_t *)ctx->data_buf + buf_offset);
> +     printf("Sweep Host %p to FPGA 0x%"PRIx64
> +             " with 0x%"PRIx64" bytes ...\n",
> +             (void *)dma_buf_ptr, ddr_offset, test_size);
> +
> +     for (i = 0; i < SWEEP_ITERS; i++) {
> +             clock_gettime(CLOCK_MONOTONIC, &start);
> +             ret = dma_transfer_sync(ctx, ddr_offset,
> (uint64_t)dma_buf_ptr,
> +                     test_size, HOST_TO_FPGA);
> +             clock_gettime(CLOCK_MONOTONIC, &end);
> +             if (ret) {
> +                     IFPGA_RAWDEV_PMD_ERR("Failed");
> +                     return ret;
> +             }
> +             total_time += getTime(start, end);
> +     }
> +     throughput = (test_size * SWEEP_ITERS) / (total_time * 1000000);
> +     printf("Measured bandwidth = %lf MB/s\n", throughput);
> +
> +     printf("Sweep FPGA 0x%"PRIx64" to Host %p with 0x%"PRIx64" bytes
> ...\n",
> +             ddr_offset, (void *)dma_buf_ptr, test_size);
> +
> +     total_time = 0.0;
> +     memset((char *)dma_buf_ptr, 0, test_size);
> +     for (i = 0; i < SWEEP_ITERS; i++) {
> +             clock_gettime(CLOCK_MONOTONIC, &start);
> +             ret = dma_transfer_sync(ctx, (uint64_t)dma_buf_ptr,
> ddr_offset,
> +                     test_size, FPGA_TO_HOST);
> +             clock_gettime(CLOCK_MONOTONIC, &end);
> +             if (ret) {
> +                     IFPGA_RAWDEV_PMD_ERR("Failed");
> +                     return ret;
> +             }
> +             total_time += getTime(start, end);
> +     }
> +     throughput = (test_size * SWEEP_ITERS) / (total_time * 1000000);
> +     printf("Measured bandwidth = %lf MB/s\n", throughput);
> +
> +     printf("Verifying buffer ...\n");
> +     return dma_afu_buf_verify(ctx, test_size);
> +}
> +
> +static int dma_afu_test(struct afu_rawdev *dev)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     struct dma_afu_ctx *ctx = NULL;
> +     struct rte_pmd_afu_dma_cfg *cfg = NULL;
> +     msgdma_ctrl ctrl;
> +     uint64_t offset = 0;
> +     uint32_t i = 0;
> +     int ret = 0;
> +
> +     if (!dev)
> +             return -EINVAL;
> +
> +     if (!dev->priv)
> +             return -ENOENT;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +     cfg = &priv->dma_cfg;
> +     if (cfg->index >= NUM_N3000_DMA)
> +             return -EINVAL;
> +     ctx = &priv->dma_ctx[cfg->index];
> +
> +     ctx->pattern = (int)cfg->pattern;
> +     ctx->verbose = (int)cfg->verbose;
> +     ctx->dma_buf_size = cfg->size;
> +
> +     ret = dma_afu_buf_alloc(ctx, cfg);
> +     if (ret)
> +             goto free;
> +
> +     printf("Initialize test buffer\n");
> +     dma_afu_buf_init(ctx, cfg->length);
> +
> +     /* enable interrupt */
> +     ctrl.csr = 0;
> +     ctrl.global_intr_en_mask = 1;
> +     rte_write32(ctrl.csr, CSR_CONTROL(ctx->csr_addr));
> +
> +     printf("Host %p to FPGA 0x%x with 0x%x bytes\n", ctx->data_buf,
> +             cfg->offset, cfg->length);
> +     ret = dma_transfer_sync(ctx, cfg->offset, (uint64_t)ctx->data_buf,
> +             cfg->length, HOST_TO_FPGA);
> +     if (ret) {
> +             IFPGA_RAWDEV_PMD_ERR("Failed to transfer data from host
> to FPGA");
> +             goto end;
> +     }
> +     memset(ctx->data_buf, 0, cfg->length);
> +
> +     printf("FPGA 0x%x to Host %p with 0x%x bytes\n", cfg->offset,
> +             ctx->data_buf, cfg->length);
> +     ret = dma_transfer_sync(ctx, (uint64_t)ctx->data_buf, cfg->offset,
> +             cfg->length, FPGA_TO_HOST);
> +     if (ret) {
> +             IFPGA_RAWDEV_PMD_ERR("Failed to transfer data from FPGA
> to host");
> +             goto end;
> +     }
> +     ret = dma_afu_buf_verify(ctx, cfg->length);
> +     if (ret)
> +             goto end;
> +
> +     if ((cfg->offset + cfg->length * 2) <= ctx->mem_size)
> +             offset = cfg->offset + cfg->length;
> +     else if (cfg->offset > cfg->length)
> +             offset = 0;
> +     else
> +             goto end;
> +
> +     printf("FPGA 0x%x to FPGA 0x%"PRIx64" with 0x%x bytes\n",
> +             cfg->offset, offset, cfg->length);
> +     ret = dma_transfer_sync(ctx, offset, cfg->offset, cfg->length,
> +             FPGA_TO_FPGA);
> +     if (ret) {
> +             IFPGA_RAWDEV_PMD_ERR("Failed to transfer data from FPGA
> to FPGA");
> +             goto end;
> +     }
> +
> +     printf("FPGA 0x%"PRIx64" to Host %p with 0x%x bytes\n", offset,
> +             ctx->data_buf, cfg->length);
> +     ret = dma_transfer_sync(ctx, (uint64_t)ctx->data_buf, offset,
> +             cfg->length, FPGA_TO_HOST);
> +     if (ret) {
> +             IFPGA_RAWDEV_PMD_ERR("Failed to transfer data from FPGA
> to host");
> +             goto end;
> +     }
> +     ret = dma_afu_buf_verify(ctx, cfg->length);
> +     if (ret)
> +             goto end;
> +
> +     printf("Sweep with aligned address and size\n");
> +     ret = sweep_test(ctx, cfg->length, cfg->offset, 0, 0);
> +     if (ret)
> +             goto end;
> +
> +     if (cfg->unaligned) {
> +             printf("Sweep with unaligned address and size\n");
> +             struct unaligned_set {
> +                     uint64_t addr_offset;
> +                     uint64_t size_dec;
> +             } param[] = {{61, 5}, {3, 0}, {7, 3}, {0, 3}, {0, 61}, {0, 7}};
> +             for (i = 0; i < ARRAY_SIZE(param); i++) {
> +                     ret = sweep_test(ctx, cfg->length, cfg->offset,
> +                             param[i].addr_offset, param[i].size_dec);
> +                     if (ret)
> +                             break;
> +             }
> +     }
> +
> +end:
> +     /* disable interrupt */
> +     ctrl.global_intr_en_mask = 0;
> +     rte_write32(ctrl.csr, CSR_CONTROL(ctx->csr_addr));
> +
> +free:
> +     dma_afu_buf_free(ctx);
> +     return ret;
> +}
> +
> +static struct rte_pci_device *n3000_afu_get_pci_dev(struct afu_rawdev *dev)
> +{
> +     struct rte_afu_device *afudev = NULL;
> +
> +     if (!dev || !dev->rawdev || !dev->rawdev->device)
> +             return NULL;
> +
> +     afudev = RTE_DEV_TO_AFU(dev->rawdev->device);
> +     if (!afudev->rawdev || !afudev->rawdev->device)
> +             return NULL;
> +
> +     return RTE_DEV_TO_PCI(afudev->rawdev->device);
> +}
> +
> +#ifdef VFIO_PRESENT
> +static int dma_afu_set_irqs(struct afu_rawdev *dev, uint32_t vec_start,
> +     uint32_t count, int *efds)
> +{
> +     struct rte_pci_device *pci_dev = NULL;
> +     struct vfio_irq_set *irq_set = NULL;
> +     int vfio_dev_fd = 0;
> +     size_t sz = 0;
> +     int ret = 0;
> +
> +     if (!dev || !efds || (count == 0) || (count > MAX_MSIX_VEC))
> +             return -EINVAL;
> +
> +     pci_dev = n3000_afu_get_pci_dev(dev);
> +     if (!pci_dev)
> +             return -ENODEV;
> +     vfio_dev_fd = rte_intr_dev_fd_get(pci_dev->intr_handle);
> +
> +     sz = sizeof(*irq_set) + sizeof(*efds) * count;
> +     irq_set = rte_zmalloc(NULL, sz, 0);
> +     if (!irq_set)
> +             return -ENOMEM;
> +
> +     irq_set->argsz = (uint32_t)sz;
> +     irq_set->count = count;
> +     irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
> +             VFIO_IRQ_SET_ACTION_TRIGGER;
> +     irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
> +     irq_set->start = vec_start;
> +
> +     rte_memcpy(&irq_set->data, efds, sizeof(*efds) * count);
> +     ret = ioctl(vfio_dev_fd, VFIO_DEVICE_SET_IRQS, irq_set);
> +     if (ret)
> +             IFPGA_RAWDEV_PMD_ERR("Error enabling MSI-X
> interrupts\n");
> +
> +     rte_free(irq_set);
> +     return ret;
> +}
> +#endif
> +
> +static void *n3000_afu_get_port_addr(struct afu_rawdev *dev)
> +{
> +     struct rte_pci_device *pci_dev = NULL;
> +     uint8_t *addr = NULL;
> +     uint64_t val = 0;
> +     uint32_t bar = 0;
> +
> +     pci_dev = n3000_afu_get_pci_dev(dev);
> +     if (!pci_dev)
> +             return NULL;
> +
> +     addr = (uint8_t *)pci_dev->mem_resource[0].addr;
> +     val = rte_read64(addr + PORT_ATTR_REG(dev->port));
> +     if (!PORT_IMPLEMENTED(val)) {
> +             IFPGA_RAWDEV_PMD_INFO("FIU port %d is not implemented",
> dev->port);
> +             return NULL;
> +     }
> +
> +     bar = PORT_BAR(val);
> +     if (bar >= PCI_MAX_RESOURCE) {
> +             IFPGA_RAWDEV_PMD_ERR("BAR index %u is out of limit", bar);
> +             return NULL;
> +     }
> +
> +     addr = (uint8_t *)pci_dev->mem_resource[bar].addr +
> PORT_OFFSET(val);
> +     return addr;
> +}
> +
> +static int n3000_afu_get_irq_capability(struct afu_rawdev *dev,
> +     uint32_t *vec_start, uint32_t *vec_count)
> +{
> +     uint8_t *addr = NULL;
> +     uint64_t val = 0;
> +     uint64_t header = 0;
> +     uint64_t next_offset = 0;
> +
> +     addr = (uint8_t *)n3000_afu_get_port_addr(dev);
> +     if (!addr)
> +             return -ENOENT;
> +
> +     do {
> +             addr += next_offset;
> +             header = rte_read64(addr);
> +             if ((DFH_TYPE(header) == DFH_TYPE_PRIVATE) &&
> +                     (DFH_FEATURE_ID(header) ==
> PORT_FEATURE_UINT_ID)) {
> +                     val = rte_read64(addr + PORT_UINT_CAP_REG);
> +                     if (vec_start)
> +                             *vec_start = PORT_VEC_START(val);
> +                     if (vec_count)
> +                             *vec_count = PORT_VEC_COUNT(val);
> +                     return 0;
> +             }
> +             next_offset = DFH_NEXT_OFFSET(header);
> +             if (((next_offset & 0xffff) == 0xffff) || (next_offset == 0))
> +                     break;
> +     } while (!DFH_EOL(header));
> +
> +     return -ENOENT;
> +}
> +
> +static int nlb_afu_ctx_release(struct afu_rawdev *dev)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     struct nlb_afu_ctx *ctx = NULL;
> +
> +     if (!dev)
> +             return -EINVAL;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +     if (!priv)
> +             return -ENOENT;
> +
> +     ctx = &priv->nlb_ctx;
> +
> +     rte_free(ctx->dsm_ptr);
> +     ctx->dsm_ptr = NULL;
> +     ctx->status_ptr = NULL;
> +
> +     rte_free(ctx->src_ptr);
> +     ctx->src_ptr = NULL;
> +
> +     rte_free(ctx->dest_ptr);
> +     ctx->dest_ptr = NULL;
> +
> +     return 0;
> +}
> +
> +static int nlb_afu_ctx_init(struct afu_rawdev *dev, uint8_t *addr)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     struct nlb_afu_ctx *ctx = NULL;
> +     int ret = 0;
> +
> +     if (!dev || !addr)
> +             return -EINVAL;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +     if (!priv)
> +             return -ENOENT;
> +
> +     ctx = &priv->nlb_ctx;
> +     ctx->addr = addr;
> +
> +     ctx->dsm_ptr = (uint8_t *)rte_zmalloc(NULL, DSM_SIZE,
> TEST_MEM_ALIGN);
> +     if (!ctx->dsm_ptr)
> +             return -ENOMEM;
> +
> +     ctx->dsm_iova = rte_malloc_virt2iova(ctx->dsm_ptr);
> +     if (ctx->dsm_iova == RTE_BAD_IOVA) {
> +             ret = -ENOMEM;
> +             goto release_dsm;
> +     }
> +
> +     ctx->src_ptr = (uint8_t *)rte_zmalloc(NULL, NLB_BUF_SIZE,
> +             TEST_MEM_ALIGN);
> +     if (!ctx->src_ptr) {
> +             ret = -ENOMEM;
> +             goto release_dsm;
> +     }
> +     ctx->src_iova = rte_malloc_virt2iova(ctx->src_ptr);
> +     if (ctx->src_iova == RTE_BAD_IOVA) {
> +             ret = -ENOMEM;
> +             goto release_src;
> +     }
> +
> +     ctx->dest_ptr = (uint8_t *)rte_zmalloc(NULL, NLB_BUF_SIZE,
> +             TEST_MEM_ALIGN);
> +     if (!ctx->dest_ptr) {
> +             ret = -ENOMEM;
> +             goto release_src;
> +     }
> +     ctx->dest_iova = rte_malloc_virt2iova(ctx->dest_ptr);
> +     if (ctx->dest_iova == RTE_BAD_IOVA) {
> +             ret = -ENOMEM;
> +             goto release_dest;
> +     }
> +
> +     ctx->status_ptr = (struct nlb_dsm_status *)(ctx->dsm_ptr +
> DSM_STATUS);
> +     return 0;
> +
> +release_dest:
> +     rte_free(ctx->dest_ptr);
> +     ctx->dest_ptr = NULL;
> +release_src:
> +     rte_free(ctx->src_ptr);
> +     ctx->src_ptr = NULL;
> +release_dsm:
> +     rte_free(ctx->dsm_ptr);
> +     ctx->dsm_ptr = NULL;
> +     return ret;
> +}
> +
> +static int dma_afu_ctx_release(struct afu_rawdev *dev)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     struct dma_afu_ctx *ctx = NULL;
> +
> +     if (!dev)
> +             return -EINVAL;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +     if (!priv)
> +             return -ENOENT;
> +
> +     ctx = &priv->dma_ctx[0];
> +
> +     rte_free(ctx->desc_buf);
> +     ctx->desc_buf = NULL;
> +
> +     rte_free(ctx->magic_buf);
> +     ctx->magic_buf = NULL;
> +
> +     close(ctx->event_fd);
> +     return 0;
> +}
> +
> +static int dma_afu_ctx_init(struct afu_rawdev *dev, int index, uint8_t *addr)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     struct dma_afu_ctx *ctx = NULL;
> +     uint64_t mem_sz[] = {0x100000000, 0x100000000, 0x40000000,
> 0x1000000};
> +     static int efds[1] = {0};
> +     uint32_t vec_start = 0;
> +     int ret = 0;
> +
> +     if (!dev || (index < 0) || (index >= NUM_N3000_DMA) || !addr)
> +             return -EINVAL;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +     if (!priv)
> +             return -ENOENT;
> +
> +     ctx = &priv->dma_ctx[index];
> +     ctx->index = index;
> +     ctx->addr = addr;
> +     ctx->csr_addr = addr + DMA_CSR;
> +     ctx->desc_addr = addr + DMA_DESC;
> +     ctx->ase_ctrl_addr = addr + DMA_ASE_CTRL;
> +     ctx->ase_data_addr = addr + DMA_ASE_DATA;
> +     ctx->mem_size = mem_sz[ctx->index];
> +     ctx->cur_ase_page = INVALID_ASE_PAGE;
> +     if (ctx->index == 0) {
> +             ret = n3000_afu_get_irq_capability(dev, &vec_start, NULL);
> +             if (ret)
> +                     return ret;
> +
> +             efds[0] = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
> +             if (efds[0] < 0) {
> +                     IFPGA_RAWDEV_PMD_ERR("eventfd create failed");
> +                     return -EBADF;
> +             }
> +#ifdef VFIO_PRESENT
> +             if (dma_afu_set_irqs(dev, vec_start, 1, efds))
> +                     IFPGA_RAWDEV_PMD_ERR("DMA interrupt setup
> failed");
> +#endif
> +     }
> +     ctx->event_fd = efds[0];
> +
> +     ctx->desc_buf = (msgdma_ext_desc *)rte_zmalloc(NULL,
> +             sizeof(msgdma_ext_desc), DMA_ALIGN_BYTES);
> +     if (!ctx->desc_buf) {
> +             ret = -ENOMEM;
> +             goto release;
> +     }
> +
> +     ctx->magic_buf = (uint64_t *)rte_zmalloc(NULL, MAGIC_BUF_SIZE,
> +             TEST_MEM_ALIGN);
> +     if (!ctx->magic_buf) {
> +             ret = -ENOMEM;
> +             goto release;
> +     }
> +     ctx->magic_iova = rte_malloc_virt2iova(ctx->magic_buf);
> +     if (ctx->magic_iova == RTE_BAD_IOVA) {
> +             ret = -ENOMEM;
> +             goto release;
> +     }
> +
> +     return 0;
> +
> +release:
> +     dma_afu_ctx_release(dev);
> +     return ret;
> +}
> +
> +static int n3000_afu_ctx_init(struct afu_rawdev *dev)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     uint8_t *addr = NULL;
> +     uint64_t header = 0;
> +     uint64_t uuid_hi = 0;
> +     uint64_t uuid_lo = 0;
> +     uint64_t next_offset = 0;
> +     int ret = 0;
> +
> +     if (!dev)
> +             return -EINVAL;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +     if (!priv)
> +             return -ENOENT;
> +
> +     addr = (uint8_t *)dev->addr;
> +     do {
> +             addr += next_offset;
> +             header = rte_read64(addr);
> +             uuid_lo = rte_read64(addr + DFH_UUID_L_OFFSET);
> +             uuid_hi = rte_read64(addr + DFH_UUID_H_OFFSET);
> +
> +             if ((DFH_TYPE(header) == DFH_TYPE_AFU) &&
> +                     (uuid_lo == N3000_NLB0_UUID_L) &&
> +                     (uuid_hi == N3000_NLB0_UUID_H)) {
> +                     IFPGA_RAWDEV_PMD_INFO("AFU NLB0 found @ %p",
> (void *)addr);
> +                     ret = nlb_afu_ctx_init(dev, addr);
> +                     if (ret)
> +                             return ret;
> +             } else if ((DFH_TYPE(header) == DFH_TYPE_BBB) &&
> +                     (uuid_lo == N3000_DMA_UUID_L) &&
> +                     (uuid_hi == N3000_DMA_UUID_H) &&
> +                     (priv->num_dma < NUM_N3000_DMA)) {
> +                     IFPGA_RAWDEV_PMD_INFO("AFU DMA%d found @
> %p",
> +                             priv->num_dma, (void *)addr);
> +                     ret = dma_afu_ctx_init(dev, priv->num_dma, addr);
> +                     if (ret)
> +                             return ret;
> +                     priv->num_dma++;
> +             } else {
> +                     IFPGA_RAWDEV_PMD_DEBUG("DFH: type %"PRIu64
> +                             ", uuid %016"PRIx64"%016"PRIx64,
> +                             DFH_TYPE(header), uuid_hi, uuid_lo);
> +             }
> +
> +             next_offset = DFH_NEXT_OFFSET(header);
> +             if (((next_offset & 0xffff) == 0xffff) || (next_offset == 0))
> +                     break;
> +     } while (!DFH_EOL(header));
> +
> +     return 0;
> +}
> +
> +static int n3000_afu_init(struct afu_rawdev *dev)
> +{
> +     if (!dev)
> +             return -EINVAL;
> +
> +     if (!dev->priv) {
> +             dev->priv = rte_zmalloc(NULL, sizeof(struct n3000_afu_priv), 0);
> +             if (!dev->priv)
> +                     return -ENOMEM;
> +     }
> +
> +     return n3000_afu_ctx_init(dev);
> +}
> +
> +static int n3000_afu_config(struct afu_rawdev *dev, void *config,
> +     size_t config_size)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     struct rte_pmd_afu_n3000_cfg *cfg = NULL;
> +     int i = 0;
> +     uint64_t top = 0;
> +
> +     if (!dev || !config || !config_size)
> +             return -EINVAL;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +     if (!priv)
> +             return -ENOENT;
> +
> +     if (config_size != sizeof(struct rte_pmd_afu_n3000_cfg))
> +             return -EINVAL;
> +
> +     cfg = (struct rte_pmd_afu_n3000_cfg *)config;
> +     if (cfg->type == RTE_PMD_AFU_N3000_NLB) {
> +             if (cfg->nlb_cfg.mode != NLB_MODE_LPBK)
> +                     return -EINVAL;
> +             if ((cfg->nlb_cfg.read_vc > NLB_VC_RANDOM) ||
> +                     (cfg->nlb_cfg.write_vc > NLB_VC_RANDOM))
> +                     return -EINVAL;
> +             if (cfg->nlb_cfg.wrfence_vc > NLB_VC_VH1)
> +                     return -EINVAL;
> +             if (cfg->nlb_cfg.cache_hint > NLB_RDLINE_MIXED)
> +                     return -EINVAL;
> +             if (cfg->nlb_cfg.cache_policy > NLB_WRPUSH_I)
> +                     return -EINVAL;
> +             if ((cfg->nlb_cfg.multi_cl != 1) &&
> +                     (cfg->nlb_cfg.multi_cl != 2) &&
> +                     (cfg->nlb_cfg.multi_cl != 4))
> +                     return -EINVAL;
> +             if ((cfg->nlb_cfg.begin < MIN_CACHE_LINES) ||
> +                     (cfg->nlb_cfg.begin > MAX_CACHE_LINES))
> +                     return -EINVAL;
> +             if ((cfg->nlb_cfg.end < cfg->nlb_cfg.begin) ||
> +                     (cfg->nlb_cfg.end > MAX_CACHE_LINES))
> +                     return -EINVAL;
> +             rte_memcpy(&priv->nlb_cfg, &cfg->nlb_cfg,
> +                     sizeof(struct rte_pmd_afu_nlb_cfg));
> +     } else if (cfg->type == RTE_PMD_AFU_N3000_DMA) {
> +             if (cfg->dma_cfg.index >= NUM_N3000_DMA)
> +                     return -EINVAL;
> +             i = cfg->dma_cfg.index;
> +             if (cfg->dma_cfg.length > priv->dma_ctx[i].mem_size)
> +                     return -EINVAL;
> +             if (cfg->dma_cfg.offset >= priv->dma_ctx[i].mem_size)
> +                     return -EINVAL;
> +             top = cfg->dma_cfg.length + cfg->dma_cfg.offset;
> +             if ((top == 0) || (top > priv->dma_ctx[i].mem_size))
> +                     return -EINVAL;
> +             if (i == 3) {  /* QDR connected to DMA3 */
> +                     if (cfg->dma_cfg.length & 0x3f) {
> +                             cfg->dma_cfg.length &= ~0x3f;
> +                             IFPGA_RAWDEV_PMD_INFO("Round size to %x
> for QDR",
> +                                     cfg->dma_cfg.length);
> +                     }
> +             }
> +             rte_memcpy(&priv->dma_cfg, &cfg->dma_cfg,
> +                     sizeof(struct rte_pmd_afu_dma_cfg));
> +     } else {
> +             IFPGA_RAWDEV_PMD_ERR("Invalid type of N3000 AFU");
> +             return -EINVAL;
> +     }
> +
> +     priv->cfg_type = cfg->type;
> +     return 0;
> +}
> +
> +static int n3000_afu_test(struct afu_rawdev *dev)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +     int ret = 0;
> +
> +     if (!dev)
> +             return -EINVAL;
> +
> +     if (!dev->priv)
> +             return -ENOENT;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +
> +     if (priv->cfg_type == RTE_PMD_AFU_N3000_NLB) {
> +             IFPGA_RAWDEV_PMD_INFO("Test NLB");
> +             ret = nlb_afu_test(dev);
> +     } else if (priv->cfg_type == RTE_PMD_AFU_N3000_DMA) {
> +             IFPGA_RAWDEV_PMD_INFO("Test DMA%u", priv-
> >dma_cfg.index);
> +             ret = dma_afu_test(dev);
> +     } else {
> +             IFPGA_RAWDEV_PMD_ERR("Please configure AFU before
> test");
> +             ret = -EINVAL;
> +     }
> +
> +     return ret;
> +}
> +
> +static int n3000_afu_close(struct afu_rawdev *dev)
> +{
> +     if (!dev)
> +             return -EINVAL;
> +
> +     nlb_afu_ctx_release(dev);
> +     dma_afu_ctx_release(dev);
> +
> +     rte_free(dev->priv);
> +     dev->priv = NULL;
> +
> +     return 0;
> +}
> +
> +static int n3000_afu_dump(struct afu_rawdev *dev, FILE *f)
> +{
> +     struct n3000_afu_priv *priv = NULL;
> +
> +     if (!dev)
> +             return -EINVAL;
> +
> +     priv = (struct n3000_afu_priv *)dev->priv;
> +     if (!priv)
> +             return -ENOENT;
> +
> +     if (!f)
> +             f = stdout;
> +
> +     if (priv->cfg_type == RTE_PMD_AFU_N3000_NLB) {
> +             struct nlb_afu_ctx *ctx = &priv->nlb_ctx;
> +             fprintf(f, "addr:\t\t%p\n", (void *)ctx->addr);
> +             fprintf(f, "dsm_ptr:\t%p\n", (void *)ctx->dsm_ptr);
> +             fprintf(f, "dsm_iova:\t0x%"PRIx64"\n", ctx->dsm_iova);
> +             fprintf(f, "src_ptr:\t%p\n", (void *)ctx->src_ptr);
> +             fprintf(f, "src_iova:\t0x%"PRIx64"\n", ctx->src_iova);
> +             fprintf(f, "dest_ptr:\t%p\n", (void *)ctx->dest_ptr);
> +             fprintf(f, "dest_iova:\t0x%"PRIx64"\n", ctx->dest_iova);
> +             fprintf(f, "status_ptr:\t%p\n", (void *)ctx->status_ptr);
> +     } else if (priv->cfg_type == RTE_PMD_AFU_N3000_DMA) {
> +             struct dma_afu_ctx *ctx = &priv->dma_ctx[priv-
> >dma_cfg.index];
> +             fprintf(f, "index:\t\t%d\n", ctx->index);
> +             fprintf(f, "addr:\t\t%p\n", (void *)ctx->addr);
> +             fprintf(f, "csr_addr:\t%p\n", (void *)ctx->csr_addr);
> +             fprintf(f, "desc_addr:\t%p\n", (void *)ctx->desc_addr);
> +             fprintf(f, "ase_ctrl_addr:\t%p\n", (void *)ctx->ase_ctrl_addr);
> +             fprintf(f, "ase_data_addr:\t%p\n", (void *)ctx->ase_data_addr);
> +             fprintf(f, "desc_buf:\t%p\n", (void *)ctx->desc_buf);
> +             fprintf(f, "magic_buf:\t%p\n", (void *)ctx->magic_buf);
> +             fprintf(f, "magic_iova:\t0x%"PRIx64"\n", ctx->magic_iova);
> +     } else {
> +             return -EINVAL;
> +     }
> +
> +     return 0;
> +}
> +
> +static int n3000_afu_reset(struct afu_rawdev *dev)
> +{
> +     uint8_t *addr = NULL;
> +     uint64_t val = 0;
> +
> +     addr = (uint8_t *)n3000_afu_get_port_addr(dev);
> +     if (!addr)
> +             return -ENOENT;
> +
> +     val = rte_read64(addr + PORT_CTRL_REG);
> +     val |= PORT_SOFT_RESET;
> +     rte_write64(val, addr + PORT_CTRL_REG);
> +     rte_delay_us(100);
> +     val &= ~PORT_SOFT_RESET;
> +     rte_write64(val, addr + PORT_CTRL_REG);
> +
> +     return 0;
> +}
> +
> +static struct afu_ops n3000_afu_ops = {
> +     .init = n3000_afu_init,
> +     .config = n3000_afu_config,
> +     .start = NULL,
> +     .stop = NULL,
> +     .test = n3000_afu_test,
> +     .close = n3000_afu_close,
> +     .dump = n3000_afu_dump,
> +     .reset = n3000_afu_reset
> +};
> +
> +static struct afu_rawdev_drv n3000_afu_drv = {
> +     .uuid = { N3000_AFU_UUID_L, N3000_AFU_UUID_H },
> +     .ops = &n3000_afu_ops
> +};
> +
> +AFU_PMD_REGISTER(n3000_afu_drv);
> diff --git a/drivers/raw/ifpga/afu_pmd_n3000.h
> b/drivers/raw/ifpga/afu_pmd_n3000.h
> new file mode 100644
> index 0000000..67e83fe
> --- /dev/null
> +++ b/drivers/raw/ifpga/afu_pmd_n3000.h
> @@ -0,0 +1,339 @@
> +/* SPDX-License-Identifier: BSD-3-Clause
> + * Copyright(c) 2022 Intel Corporation
> + */
> +
> +#ifndef _AFU_PMD_N3000_H_
> +#define _AFU_PMD_N3000_H_
> +
> +#ifdef __cplusplus
> +extern "C" {
> +#endif
> +
> +#include "afu_pmd_core.h"
> +#include "rte_pmd_afu.h"
> +
> +#define N3000_AFU_UUID_L  0xc000c9660d824272
> +#define N3000_AFU_UUID_H  0x9aeffe5f84570612
> +#define N3000_NLB0_UUID_L 0xf89e433683f9040b
> +#define N3000_NLB0_UUID_H 0xd8424dc4a4a3c413
> +#define N3000_DMA_UUID_L  0xa9149a35bace01ea
> +#define N3000_DMA_UUID_H  0xef82def7f6ec40fc
> +
> +#define NUM_N3000_DMA  4
> +#define MAX_MSIX_VEC   7
> +
> +/* N3000 DFL definition */
> +#define DFH_UUID_L_OFFSET  8
> +#define DFH_UUID_H_OFFSET  16
> +#define DFH_TYPE(hdr)  (((hdr) >> 60) & 0xf)
> +#define DFH_TYPE_AFU  1
> +#define DFH_TYPE_BBB  2
> +#define DFH_TYPE_PRIVATE  3
> +#define DFH_EOL(hdr)  (((hdr) >> 40) & 0x1)
> +#define DFH_NEXT_OFFSET(hdr)  (((hdr) >> 16) & 0xffffff)
> +#define DFH_FEATURE_ID(hdr)  ((hdr) & 0xfff)
> +#define PORT_ATTR_REG(n)  (((n) << 3) + 0x38)
> +#define PORT_IMPLEMENTED(attr)  (((attr) >> 60) & 0x1)
> +#define PORT_BAR(attr)  (((attr) >> 32) & 0x7)
> +#define PORT_OFFSET(attr)  ((attr) & 0xffffff)
> +#define PORT_FEATURE_UINT_ID  0x12
> +#define PORT_UINT_CAP_REG  0x8
> +#define PORT_VEC_START(cap)  (((cap) >> 12) & 0xfff)
> +#define PORT_VEC_COUNT(cap)  ((cap) >> 12 & 0xfff)
> +#define PORT_CTRL_REG  0x38
> +#define PORT_SOFT_RESET  (0x1 << 0)
> +
> +/* NLB registers definition */
> +#define CSR_SCRATCHPAD0    0x100
> +#define CSR_SCRATCHPAD1    0x108
> +#define CSR_AFU_DSM_BASEL  0x110
> +#define CSR_AFU_DSM_BASEH  0x114
> +#define CSR_SRC_ADDR       0x120
> +#define CSR_DST_ADDR       0x128
> +#define CSR_NUM_LINES      0x130
> +#define CSR_CTL            0x138
> +#define CSR_CFG            0x140
> +#define CSR_INACT_THRESH   0x148
> +#define CSR_INTERRUPT0     0x150
> +#define CSR_SWTEST_MSG     0x158
> +#define CSR_STATUS0        0x160
> +#define CSR_STATUS1        0x168
> +#define CSR_ERROR          0x170
> +#define CSR_STRIDE         0x178
> +#define CSR_HE_INFO0       0x180
> +
> +#define DSM_SIZE           0x200000
> +#define DSM_STATUS         0x40
> +#define DSM_POLL_INTERVAL  5  /* ms */
> +#define DSM_TIMEOUT        1000  /* ms */
> +
> +#define NLB_BUF_SIZE  0x400000
> +#define TEST_MEM_ALIGN  1024
> +
> +struct nlb_csr_ctl {
> +     union {
> +             uint32_t csr;
> +             struct {
> +                     uint32_t reset:1;
> +                     uint32_t start:1;
> +                     uint32_t force_completion:1;
> +                     uint32_t reserved:29;
> +             };
> +     };
> +};
> +
> +struct nlb_csr_cfg {
> +     union {
> +             uint32_t csr;
> +             struct {
> +                     uint32_t wrthru_en:1;
> +                     uint32_t cont:1;
> +                     uint32_t mode:3;
> +                     uint32_t multicl_len:2;
> +                     uint32_t rsvd1:1;
> +                     uint32_t delay_en:1;
> +                     uint32_t rdsel:2;
> +                     uint32_t rsvd2:1;
> +                     uint32_t chsel:3;
> +                     uint32_t rsvd3:1;
> +                     uint32_t wrpush_i:1;
> +                     uint32_t wr_chsel:3;
> +                     uint32_t rsvd4:3;
> +                     uint32_t test_cfg:5;
> +                     uint32_t interrupt_on_error:1;
> +                     uint32_t interrupt_testmode:1;
> +                     uint32_t wrfence_chsel:2;
> +             };
> +     };
> +};
> +
> +struct nlb_status0 {
> +     union {
> +             uint64_t csr;
> +             struct {
> +                     uint32_t num_writes;
> +                     uint32_t num_reads;
> +             };
> +     };
> +};
> +
> +struct nlb_status1 {
> +     union {
> +             uint64_t csr;
> +             struct {
> +                     uint32_t num_pend_writes;
> +                     uint32_t num_pend_reads;
> +             };
> +     };
> +};
> +
> +struct nlb_dsm_status {
> +     uint32_t test_complete;
> +     uint32_t test_error;
> +     uint64_t num_clocks;
> +     uint32_t num_reads;
> +     uint32_t num_writes;
> +     uint32_t start_overhead;
> +     uint32_t end_overhead;
> +};
> +
> +/* DMA registers definition */
> +#define DMA_CSR       0x40
> +#define DMA_DESC      0x60
> +#define DMA_ASE_CTRL  0x200
> +#define DMA_ASE_DATA  0x1000
> +
> +#define DMA_ASE_WINDOW       4096
> +#define DMA_ASE_WINDOW_MASK  ((uint64_t)(DMA_ASE_WINDOW - 1))
> +#define INVALID_ASE_PAGE     0xffffffffffffffffULL
> +
> +#define DMA_WF_MAGIC             0x5772745F53796E63ULL
> +#define DMA_WF_MAGIC_ROM         0x1000000000000
> +#define DMA_HOST_ADDR(addr)      ((addr) | 0x2000000000000)
> +#define DMA_WF_HOST_ADDR(addr)   ((addr) | 0x3000000000000)
> +
> +#define NUM_DMA_BUF   8
> +#define HALF_DMA_BUF  (NUM_DMA_BUF / 2)
> +
> +#define DMA_MASK_32_BIT 0xFFFFFFFF
> +
> +#define DMA_CSR_BUSY           0x1
> +#define DMA_DESC_BUFFER_EMPTY  0x2
> +#define DMA_DESC_BUFFER_FULL   0x4
> +
> +#define DWORD_BYTES 4
> +#define IS_ALIGNED_DWORD(addr) (((addr) % DWORD_BYTES) == 0)
> +
> +#define QWORD_BYTES 8
> +#define IS_ALIGNED_QWORD(addr) (((addr) % QWORD_BYTES) == 0)
> +
> +#define DMA_ALIGN_BYTES 64
> +#define IS_DMA_ALIGNED(addr) (((addr) % DMA_ALIGN_BYTES) == 0)
> +
> +#define CCIP_ALIGN_BYTES (DMA_ALIGN_BYTES << 2)
> +
> +#define DMA_TIMEOUT_MSEC  5000
> +
> +#define MAGIC_BUF_SIZE  64
> +#define ERR_CHECK_LIMIT  64
> +
> +#ifndef MIN
> +#define MIN(a, b) ((a) < (b) ? (a) : (b))
> +#endif
> +
> +#ifndef ARRAY_SIZE
> +#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
> +#endif
> +
> +typedef enum {
> +     HOST_TO_FPGA = 0,
> +     FPGA_TO_HOST,
> +     FPGA_TO_FPGA,
> +     FPGA_MAX_TRANSFER_TYPE,
> +} fpga_dma_type;
> +
> +typedef union {
> +     uint32_t csr;
> +     struct {
> +             uint32_t tx_channel:8;
> +             uint32_t generate_sop:1;
> +             uint32_t generate_eop:1;
> +             uint32_t park_reads:1;
> +             uint32_t park_writes:1;
> +             uint32_t end_on_eop:1;
> +             uint32_t reserved_1:1;
> +             uint32_t transfer_irq_en:1;
> +             uint32_t early_term_irq_en:1;
> +             uint32_t trans_error_irq_en:8;
> +             uint32_t early_done_en:1;
> +             uint32_t reserved_2:6;
> +             uint32_t go:1;
> +     };
> +} msgdma_desc_ctrl;
> +
> +typedef struct __rte_packed {
> +     uint32_t rd_address;
> +     uint32_t wr_address;
> +     uint32_t len;
> +     uint16_t seq_num;
> +     uint8_t rd_burst_count;
> +     uint8_t wr_burst_count;
> +     uint16_t rd_stride;
> +     uint16_t wr_stride;
> +     uint32_t rd_address_ext;
> +     uint32_t wr_address_ext;
> +     msgdma_desc_ctrl control;
> +} msgdma_ext_desc;
> +
> +typedef union {
> +     uint32_t csr;
> +     struct {
> +             uint32_t busy:1;
> +             uint32_t desc_buf_empty:1;
> +             uint32_t desc_buf_full:1;
> +             uint32_t rsp_buf_empty:1;
> +             uint32_t rsp_buf_full:1;
> +             uint32_t stopped:1;
> +             uint32_t resetting:1;
> +             uint32_t stopped_on_error:1;
> +             uint32_t stopped_on_early_term:1;
> +             uint32_t irq:1;
> +             uint32_t reserved:22;
> +     };
> +} msgdma_status;
> +
> +typedef union {
> +     uint32_t csr;
> +     struct {
> +             uint32_t stop_dispatcher:1;
> +             uint32_t reset_dispatcher:1;
> +             uint32_t stop_on_error:1;
> +             uint32_t stopped_on_early_term:1;
> +             uint32_t global_intr_en_mask:1;
> +             uint32_t stop_descriptors:1;
> +             uint32_t reserved:22;
> +     };
> +} msgdma_ctrl;
> +
> +typedef union {
> +     uint32_t csr;
> +     struct {
> +             uint32_t rd_fill_level:16;
> +             uint32_t wr_fill_level:16;
> +     };
> +} msgdma_fill_level;
> +
> +typedef union {
> +     uint32_t csr;
> +     struct {
> +             uint32_t rsp_fill_level:16;
> +             uint32_t reserved:16;
> +     };
> +} msgdma_rsp_level;
> +
> +typedef union {
> +     uint32_t csr;
> +     struct {
> +             uint32_t rd_seq_num:16;
> +             uint32_t wr_seq_num:16;
> +     };
> +} msgdma_seq_num;
> +
> +typedef struct __rte_packed {
> +     msgdma_status status;
> +     msgdma_ctrl ctrl;
> +     msgdma_fill_level fill_level;
> +     msgdma_rsp_level rsp;
> +     msgdma_seq_num seq_num;
> +} msgdma_csr;
> +
> +#define CSR_STATUS(csr)   (&(((msgdma_csr *)(csr))->status))
> +#define CSR_CONTROL(csr)  (&(((msgdma_csr *)(csr))->ctrl))
> +
> +struct nlb_afu_ctx {
> +     uint8_t *addr;
> +     uint8_t *dsm_ptr;
> +     uint64_t dsm_iova;
> +     uint8_t *src_ptr;
> +     uint64_t src_iova;
> +     uint8_t *dest_ptr;
> +     uint64_t dest_iova;
> +     struct nlb_dsm_status *status_ptr;
> +};
> +
> +struct dma_afu_ctx {
> +     int index;
> +     uint8_t *addr;
> +     uint8_t *csr_addr;
> +     uint8_t *desc_addr;
> +     uint8_t *ase_ctrl_addr;
> +     uint8_t *ase_data_addr;
> +     uint64_t mem_size;
> +     uint64_t cur_ase_page;
> +     int event_fd;
> +     int verbose;
> +     int pattern;
> +     void *data_buf;
> +     void *ref_buf;
> +     msgdma_ext_desc *desc_buf;
> +     uint64_t *magic_buf;
> +     uint64_t magic_iova;
> +     uint32_t dma_buf_size;
> +     uint64_t *dma_buf[NUM_DMA_BUF];
> +     uint64_t dma_iova[NUM_DMA_BUF];
> +};
> +
> +struct n3000_afu_priv {
> +     struct rte_pmd_afu_nlb_cfg nlb_cfg;
> +     struct rte_pmd_afu_dma_cfg dma_cfg;
> +     struct nlb_afu_ctx nlb_ctx;
> +     struct dma_afu_ctx dma_ctx[NUM_N3000_DMA];
> +     int num_dma;
> +     int cfg_type;
> +};
> +
> +#ifdef __cplusplus
> +}
> +#endif
> +
> +#endif /* _AFU_PMD_N3000_H_ */
> diff --git a/drivers/raw/ifpga/meson.build b/drivers/raw/ifpga/meson.build
> index d9a6f29..2294ab5 100644
> --- a/drivers/raw/ifpga/meson.build
> +++ b/drivers/raw/ifpga/meson.build
> @@ -13,7 +13,8 @@ objs = [base_objs]
>  deps += ['ethdev', 'rawdev', 'pci', 'bus_pci', 'kvargs',
>      'bus_vdev', 'bus_ifpga', 'net', 'net_i40e', 'net_ipn3ke']
> 
> -sources = files('ifpga_rawdev.c', 'rte_pmd_ifpga.c', 'afu_pmd_core.c')
> +sources = files('ifpga_rawdev.c', 'rte_pmd_ifpga.c', 'afu_pmd_core.c',
> +    'afu_pmd_n3000.c')
> 
>  includes += include_directories('base')
>  includes += include_directories('../../net/ipn3ke')
> diff --git a/drivers/raw/ifpga/rte_pmd_afu.h b/drivers/raw/ifpga/rte_pmd_afu.h
> new file mode 100644
> index 0000000..f14a053
> --- /dev/null
> +++ b/drivers/raw/ifpga/rte_pmd_afu.h
> @@ -0,0 +1,97 @@
> +/* SPDX-License-Identifier: BSD-3-Clause
> + * Copyright 2022 Intel Corporation
> + */
> +
> +#ifndef __RTE_PMD_AFU_H__
> +#define __RTE_PMD_AFU_H__
> +
> +/**
> + * @file rte_pmd_afu.h
> + *
> + * AFU PMD specific definitions.
> + *
> + * @b EXPERIMENTAL: this API may change, or be removed, without prior
> notice
> + *
> + */
> +
> +#ifdef __cplusplus
> +extern "C" {
> +#endif
> +
> +#include <stdint.h>
> +
> +#define RTE_PMD_AFU_N3000_NLB   1
> +#define RTE_PMD_AFU_N3000_DMA   2
> +
> +#define NLB_MODE_LPBK      0
> +#define NLB_MODE_READ      1
> +#define NLB_MODE_WRITE     2
> +#define NLB_MODE_TRPUT     3
> +
> +#define NLB_VC_AUTO        0
> +#define NLB_VC_VL0         1
> +#define NLB_VC_VH0         2
> +#define NLB_VC_VH1         3
> +#define NLB_VC_RANDOM      4
> +
> +#define NLB_WRLINE_M       0
> +#define NLB_WRLINE_I       1
> +#define NLB_WRPUSH_I       2
> +
> +#define NLB_RDLINE_S       0
> +#define NLB_RDLINE_I       1
> +#define NLB_RDLINE_MIXED   2
> +
> +#define MIN_CACHE_LINES   1
> +#define MAX_CACHE_LINES   1024
> +
> +#define MIN_DMA_BUF_SIZE  64
> +#define MAX_DMA_BUF_SIZE  (1023 * 1024)
> +
> +/**
> + * NLB AFU configuration data structure.
> + */
> +struct rte_pmd_afu_nlb_cfg {
> +     uint32_t mode;
> +     uint32_t begin;
> +     uint32_t end;
> +     uint32_t multi_cl;
> +     uint32_t cont;
> +     uint32_t timeout;
> +     uint32_t cache_policy;
> +     uint32_t cache_hint;
> +     uint32_t read_vc;
> +     uint32_t write_vc;
> +     uint32_t wrfence_vc;
> +     uint32_t freq_mhz;
> +};
> +
> +/**
> + * DMA AFU configuration data structure.
> + */
> +struct rte_pmd_afu_dma_cfg {
> +     uint32_t index;     /* index of DMA controller */
> +     uint32_t length;    /* total length of data to DMA */
> +     uint32_t offset;    /* address offset of target memory */
> +     uint32_t size;      /* size of transfer buffer */
> +     uint32_t pattern;   /* data pattern to fill in test buffer */
> +     uint32_t unaligned; /* use unaligned address or length in sweep test */
> +     uint32_t verbose;   /* enable verbose error information in test */
> +};
> +
> +/**
> + * N3000 AFU configuration data structure.
> + */
> +struct rte_pmd_afu_n3000_cfg {
> +     int type;   /* RTE_PMD_AFU_N3000_NLB or
> RTE_PMD_AFU_N3000_DMA */
> +     union {
> +             struct rte_pmd_afu_nlb_cfg nlb_cfg;
> +             struct rte_pmd_afu_dma_cfg dma_cfg;
> +     };
> +};
> +
> +#ifdef __cplusplus
> +}
> +#endif
> +
> +#endif /* __RTE_PMD_AFU_H__ */
> --

It looks good for me, you can add:
Acked-by: Tianfei Zhang <tianfei.zh...@intel.com>

Reply via email to