Why not doing two separate joins, union the results and doing a distinct operation on the combined key?
On Fri, Apr 17, 2015 at 9:42 AM, Aljoscha Krettek <aljos...@apache.org> wrote: > So, the first thing is a "feature" of the Java API that removes > duplicate fields in keys, so an equi-join on (0,0) with (0,1) would > throw an error because one 0 is removed from the first key. > > The second thing is a feature of the Table API where the error message > is hinting at the problem: > Could not derive equi-join predicates for predicate 'nodeID === 'src > || 'nodeID === 'target > > The problem is, that this would have to be executed as a cross > followed by a filter because none of the predicates are equi-join > predicates that must always be true (because of the OR relation). This > I don't want to allow, because a cross can be very expensive. I will > add a jira ticket for adding a manual cross operation to the Table > API. > > On Thu, Apr 16, 2015 at 2:28 PM, Felix Neutatz <neut...@googlemail.com> > wrote: > > Hi, > > > > I want to join two tables in the following way: > > > > case class WeightedEdge(src: Int, target: Int, weight: Double) > > case class Community(communityID: Int, nodeID: Int) > > > > case class CommunitySumTotal(communityID: Int, sumTotal: Double) > > > > val communities: DataSet[Community] > > val weightedEdges: DataSet[WeightedEdge] > > > > val communitiesTable = communities.toTable > > val weightedEdgesTable = weightedEdges.toTable > > > > val sumTotal = communitiesTable.join(weightedEdgesTable) > > .where("nodeID = src && nodeID = target") > > .groupBy('communityID) > > .select("communityID, weight.sum as sumTotal").toSet[CommunitySumTotal] > > > > > > but I get this exception: > > > > Exception in thread "main" > > org.apache.flink.api.common.InvalidProgramException: The types of the key > > fields do not match: The number of specified keys is different. > > at > > > org.apache.flink.api.java.operators.JoinOperator.<init>(JoinOperator.java:96) > > at > > > org.apache.flink.api.java.operators.JoinOperator$EquiJoin.<init>(JoinOperator.java:197) > > at > > > org.apache.flink.api.java.table.JavaBatchTranslator.createJoin(JavaBatchTranslator.scala:310) > > at > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:145) > > at > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:195) > > at > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:183) > > at > > > org.apache.flink.api.java.table.JavaBatchTranslator.translate(JavaBatchTranslator.scala:78) > > at > > > org.apache.flink.api.scala.table.ScalaBatchTranslator.translate(ScalaBatchTranslator.scala:55) > > at > > > org.apache.flink.api.scala.table.TableConversions.toSet(TableConversions.scala:37) > > Moreover when I use the following where clause: > > > > .where("nodeID = src || nodeID = target") > > > > I get another error: > > > > Exception in thread "main" > > org.apache.flink.api.table.ExpressionException: Could not derive > > equi-join predicates for predicate 'nodeID === 'src || 'nodeID === > > 'target. > > > > at > > > org.apache.flink.api.java.table.JavaBatchTranslator.createJoin(JavaBatchTranslator.scala:296) > > at > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:145) > > at > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:195) > > at > > > org.apache.flink.api.java.table.JavaBatchTranslator.translateInternal(JavaBatchTranslator.scala:183) > > at > > > org.apache.flink.api.java.table.JavaBatchTranslator.translate(JavaBatchTranslator.scala:78) > > at > > > org.apache.flink.api.scala.table.ScalaBatchTranslator.translate(ScalaBatchTranslator.scala:55) > > at > > > org.apache.flink.api.scala.table.TableConversions.toSet(TableConversions.scala:37) > > > > > > Apart from that the TableApi seems really promising. It's a really great > tool. > > > > Thank you for your help, > > > > Felix >